Transcriptome and Secretome Analyses of
Phanerochaete chrysosporium
Reveal Complex Patterns of Gene Expression
-
Published:2009-06-15
Issue:12
Volume:75
Page:4058-4068
-
ISSN:0099-2240
-
Container-title:Applied and Environmental Microbiology
-
language:en
-
Short-container-title:Appl Environ Microbiol
Author:
Vanden Wymelenberg Amber1, Gaskell Jill2, Mozuch Mike2, Kersten Phil2, Sabat Grzegorz3, Martinez Diego4, Cullen Dan2
Affiliation:
1. Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706 2. U.S. Forest Service, Forest Products Laboratory, Madison, Wisconsin 53726 3. Genetics and Biotechnology Center, University of Wisconsin, Madison, Wisconsin 53706 4. University of New Mexico, Albuquerque, New Mexico 87131
Abstract
ABSTRACT
The wood decay basidiomycete
Phanerochaete chrysosporium
was grown under standard ligninolytic or cellulolytic conditions and subjected to whole-genome expression microarray analysis and liquid chromatography-tandem mass spectrometry of extracellular proteins. A total of 545 genes were flagged on the basis of significant changes in transcript accumulation and/or peptide sequences of the secreted proteins. Under nitrogen or carbon limitation, lignin and manganese peroxidase expression increased relative to nutrient replete medium. Various extracellular oxidases were also secreted in these media, supporting a physiological connection based on peroxide generation. Numerous genes presumed to be involved in mobilizing and recycling nitrogen were expressed under nitrogen limitation, and among these were several secreted glutamic acid proteases not previously observed. In medium containing microcrystalline cellulose as the sole carbon source, numerous genes encoding carbohydrate-active enzymes were upregulated. Among these were six members of the glycoside hydrolase family 61, as well as several polysaccharide lyases and carbohydrate esterases. Presenting a daunting challenge for future research, more than 190 upregulated genes are predicted to encode proteins of unknown function. Of these hypothetical proteins, approximately one-third featured predicted secretion signals, and 54 encoded proteins detected in extracellular filtrates. Our results affirm the importance of certain oxidative enzymes and, underscoring the complexity of lignocellulose degradation, also support an important role for many new proteins of unknown function.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Reference60 articles.
1. Abbas, A., H. Koc, F. Liu, and M. Tien. 2004. Fungal degradation of wood: initial proteomic analysis of extracellular proteins of Phanerochaete chrysosporium grown on oak substrate. Curr. Genet.47:49-56. 2. Bao, W., E. Lymar, and V. Renganathan. 1994. Optimization of cellobiose dehydrogenase and β-glucosidase production by cellulose-degrading cultures of Phanerochaete chrysosporium. Appl. Biochem. Biotechnol.42:642-646. 3. Benjdia, M., E. Rikirsch, T. Muller, M. Morel, C. Corratge, S. Zimmermann, M. Chalot, W. B. Frommer, and D. Wipf. 2006. Peptide uptake in the ectomycorrhizal fungus Hebeloma cylindrosporum: characterization of two di- and tripeptide transporters (HcPTR2A and B). New Phytol.170:401-410. 4. Brazma, A., P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, J. Aach, W. Ansorge, C. A. Ball, H. C. Causton, T. Gaasterland, P. Glenisson, F. C. Holstege, I. F. Kim, V. Markowitz, J. C. Matese, H. Parkinson, A. Robinson, U. Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo, and M. Vingron. 2001. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat. Genet.29:365-371. 5. Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Lombard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res.37:D233-D238.
Cited by
145 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|