Cross Talk Inhibition Nullified by a Receiver Domain Missense Substitution

Author:

Huynh TuAnh Ngoc1,Lin Hsia-Yin1,Noriega Chris E.2,Lin Alice V.3,Stewart Valley2

Affiliation:

1. Food Science Graduate Group, University of California, Davis, California, USA

2. Department of Microbiology & Molecular Genetics, University of California, Davis, California, USA

3. Biochemistry & Molecular Biology Graduate Group, University of California, Davis, California, USA

Abstract

ABSTRACT In two-component signal transduction, a sensor protein transmitter module controls cognate receiver domain phosphorylation. Most receiver domain sequences contain a small residue (Gly or Ala) at position T + 1 just distal to the essential Thr or Ser residue that forms part of the active site. However, some members of the NarL receiver subfamily have a large hydrophobic residue at position T + 1. Our laboratory previously isolated a NarL mutant in which the T + 1 residue Val-88 was replaced with an orthodox small Ala. This NarL V88A mutant confers a striking phenotype in which high-level target operon expression is both signal (nitrate) and sensor (NarX and NarQ) independent. This suggests that the NarL V88A protein is phosphorylated by cross talk from noncognate sources. Although cross talk was enhanced in ackA null strains that accumulate acetyl phosphate, it persisted in pta ackA double null strains that cannot synthesize this compound and was observed also in narL + strains. This indicates that acetate metabolism has complex roles in mediating NarL cross talk. Contrariwise, cross talk was sharply diminished in an arcB barA double null strain, suggesting that the encoded sensors contribute substantially to NarL V88A cross talk. Separately, the V88A substitution altered the in vitro rates of NarL autodephosphorylation and transmitter-stimulated dephosphorylation and decreased affinity for the cognate sensor, NarX. Together, these experiments show that the residue at position T + 1 can strongly influence two distinct aspects of receiver domain function, the autodephosphorylation rate and cross talk inhibition. IMPORTANCE Many bacterial species contain a dozen or more discrete sensor-response regulator two-component systems that convert a specific input into a distinct output pattern. Cross talk, the unwanted transfer of signals between circuits, occurs when a response regulator is phosphorylated inappropriately from a noncognate source. Cross talk is inhibited in part by the high interaction specificity between cognate sensor-response regulator pairs. This study shows that a relatively subtle missense change from Val to Ala nullifies cross talk inhibition, enabling at least two noncognate sensors to enforce an inappropriate output independently of the relevant input.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3