Mutations in the Ubiquitin Binding UBZ Motif of DNA Polymerase η Do Not Impair Its Function in Translesion Synthesis during Replication

Author:

Acharya Narottam1,Brahma Amrita1,Haracska Lajos2,Prakash Louise1,Prakash Satya1

Affiliation:

1. Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1061

2. Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary

Abstract

ABSTRACT Treatment of Saccharomyces cerevisiae cells with DNA-damaging agents elicits lysine 164-linked PCNA monoubiquitination by Rad6-Rad18. Recently, a number of ubiquitin (Ub) binding domains (UBDs) have been identified in translesion synthesis (TLS) DNA polymerases and it has been proposed that the UBD in a TLS polymerase affects its binding to Ub on PCNA and that this binding mode is indispensable for a TLS polymerase to access PCNA at the site of a stalled replication fork. To evaluate the contribution of the binding of UBDs to the Ub moiety on PCNA in TLS, we have examined the effects of mutations in the C 2 H 2 zinc binding motif and in the conserved D570 residue that lies in the α-helix portion of the UBZ domain of yeast Polη. We find that mutations in the C 2 H 2 motif have no perceptible effect on UV sensitivity or UV mutagenesis, whereas a mutation of the D570 residue adversely affects Polη function. The stimulation of DNA synthesis by Polη with PCNA or Ub-PCNA was not affected by mutations in the C 2 H 2 motif or the D570 residue. These observations lead us to suggest that the binding of Ub on PCNA via its UBZ domain is not a necessary requirement for the ability of polymerase η to function in TLS during replication.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3