Transcriptomic Responses in the Bloom-Forming Cyanobacterium Microcystis Induced during Exposure to Zooplankton

Author:

Harke Matthew J.1,Jankowiak Jennifer G.2,Morrell Brooke K.2,Gobler Christopher J.2

Affiliation:

1. Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA

2. Stony Brook University, School of Marine and Atmospheric Sciences, Southampton, New York, USA

Abstract

ABSTRACT The bloom-forming, toxic cyanobacterium Microcystis synthesizes multiple secondary metabolites and has been shown to deter zooplankton grazing. However, the biochemical and/or molecular basis by which Microcystis deters zooplankton remains unclear. This global transcriptomic study explored the response of Microcystis to direct and indirect exposures to multiple densities of two cladoceran grazers, Daphnia pulex and D. magna . Higher densities of both daphnids significantly reduced Microcystis cell densities and elicited a stronger transcriptional response in Microcystis . While many putative grazer deterrence genes (encoding microcystin, aeruginosin, cyanopeptolin, and microviridin) were largely unaffected by zooplankton, transcripts for heat shock proteins ( hsp ) increased in abundance. Beyond metabolites and hsp , large increases in the abundances of transcripts from photosynthetic processes were observed, evidencing energy acquisition pathways were stimulated by grazing. In addition, transcripts of genes associated with the production of extracellular polysaccharides and gas vesicles significantly increased in abundance. These genes have been associated with colony formation and may have been invoked to deter grazers. Collectively, this study demonstrates that daphnid grazers induce a significant transcriptomic response in Microcystis , suggesting this cyanobacterium upregulates specific biochemical pathways to adapt to predation. IMPORTANCE This work explores the transcriptomic responses of Microcystis aeruginosa following exposure to grazing by two cladocerans, Daphnia magna and D. pulex . Contrary to previous hypotheses, Microcystis did not employ putative grazing deterrent secondary metabolites in response to the cladocerans, suggesting they may have other roles within the cell, such as oxidative stress protection. The transcriptional metabolic signature during intense grazing was largely reflective of a growth and stress response, although increasing abundances of transcripts encoding extracellular polysaccharides and gas vesicles were potentially related to predator avoidance.

Funder

The New Tamarind Foundation

DOC | National Oceanic and Atmospheric Administration

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3