Sybr Green- and TaqMan-Based Quantitative PCR Approaches Allow Assessment of the Abundance and Relative Distribution of Frankia Clusters in Soils

Author:

Ben Tekaya Seifeddine1,Ganesan Abirama Sundari1,Guerra Trina1,Dawson Jeffrey O.2,Forstner Michael R. J.1,Hahn Dittmar1

Affiliation:

1. Texas State University, Department of Biology, San Marcos, Texas, USA

2. University of Illinois at Urbana-Champaign, Department of Natural Resources and Environmental Sciences, Urbana, Illinois, USA

Abstract

ABSTRACT The nodule-forming actinobacterial genus Frankia can generally be divided into 4 taxonomic clusters, with clusters 1, 2, and 3 representing nitrogen-fixing strains of different host infection groups and cluster 4 representing atypical, generally non-nitrogen-fixing strains. Recently, quantitative PCR (qPCR)-based quantification methods have been developed for frankiae of clusters 1 and 3; however, similar approaches for clusters 2 and 4 were missing. We amended a database of partial 23S rRNA gene sequences of Frankia strains belonging to clusters 1 and 3 with sequences of frankiae representing clusters 2 and 4. The alignment allowed us to design primers and probes for the specific detection and quantification of these Frankia clusters by either Sybr Green- or TaqMan-based qPCR. Analyses of frankiae in different soils, all obtained from the same region in Illinois, USA, provided similar results, independent of the qPCR method applied, with abundance estimates of 10 × 10 5 to 15 × 10 5 cells (g soil) −1 depending on the soil. Diversity was higher in prairie soils (native, restored, and cultivated), with frankiae of all 4 clusters detected and those of cluster 4 dominating, while diversity in soils under Alnus glutinosa , a host plant for cluster 1 frankiae, or Betula nigra , a related nonhost plant, was restricted to cluster 1 and 3 frankiae and generally members of subgroup 1b were dominating. These results indicate that vegetation affects the basic composition of frankiae in soils, with higher diversity in prairie soils compared to much more restricted diversity under some host and nonhost trees. IMPORTANCE Root nodule formation by the actinobacterium Frankia is host plant specific and largely, but not exclusively, correlates with assignments of strains to specific clusters within the genus. Due to the lack of adequate detection and quantification tools, studies on Frankia have been limited to clusters 1 and 3 and generally excluded clusters 2 and 4. We have developed tools for the detection and quantification of clusters 2 and 4, which can now be used in combination with those developed for clusters 1 and 3 to retrieve information on the ecology of all clusters delineated within the genus Frankia . Our initial results indicate that vegetation affects the basic composition of frankiae in soils, with higher diversity in prairie soils compared to much more restricted diversity under some host and nonhost trees.

Funder

Texas State University

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3