Stable Association of Herpes Simplex Virus with Target Membranes Is Triggered by Low pH in the Presence of the gD Receptor, HVEM

Author:

Whitbeck J. Charles12,Zuo Yi1,Milne Richard S. B.12,Cohen Gary H.1,Eisenberg Roselyn J.12

Affiliation:

1. School of Dental Medicine

2. School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract

ABSTRACT Using a liposome-binding assay, we investigated the requirements for activation of herpes simplex virus (HSV) into a state capable of membrane interaction. Virions were mixed with liposomes along with the ectodomain of one of three gD receptors (HVEMt, nectin-1t, or nectin-2t) and incubated under different pH and temperature conditions. Virions failed to associate with liposomes in the presence of nectin-1 or nectin-2 at any temperature or pH tested. In contrast, HVEMt triggered association of HSV with liposomes at pH 5.3 or 5.0 when incubated at 37°C, suggesting that HVEM binding and mildly acidic pH at a physiological temperature provide coactivation signals, allowing virus association with membranes. Virions incubated with HVEMt at 37°C without liposomes rapidly lost infectivity upon exposure to pH 5.0, suggesting that these conditions lead to irreversible virus inactivation in the absence of target membranes. Consistent with the idea that soluble receptor molecules provide a trigger for HSV entry, HVEMt promoted virus entry into receptor-deficient CHO K1 cells. However, in B78H1 cells, HVEMt promoted virus entry with markedly lower efficiency. Interestingly, HSV entry into receptor-bearing CHO K1 cells has been shown to proceed via a pH-dependent manner, whereas HSV entry into receptor-bearing B78H1 cells is pH independent. Based on these observations, we propose that the changes triggered by HVEM and mildly acidic pH that allow liposome association are similar or identical to changes that occur during pH-dependent HSV entry.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3