Characteristics of Candida albicans adherence to mouse tissues

Author:

Cutler J E1,Brawner D L1,Hazen K C1,Jutila M A1

Affiliation:

1. Department of Microbiology, Montana State University, Bozeman 59717.

Abstract

An ex vivo binding assay originally described for determining lymphocyte homing receptors was adapted for studying Candida albicans-host cell interactions in unfixed tissue sections. BALB/cByJ mice were sacrificed, and various organs were removed, rapidly frozen on dry ice, and sectioned. C. albicans yeast cells were suspended to 1.5 x 10(8) cells per ml in Dulbecco modified Eagle medium supplemented with 5% newborn calf serum, and 100 microliters of the suspension was added to tissue sections for 15 min with rotation at 4 degrees C or at 22 to 24 degrees C. The sections were then fixed in glutaraldehyde, washed, and examined. Stationary-phase yeast cells adhered better than log-phase cells, and adherence characteristics were similar at 4 degrees C and 22 to 24 degrees C. Yeast cells from nine strains of C. albicans showed similar tissue specificity. Adherence to lymph node tissue was confined to subcapsular spaces and trabecular sinuses. In the spleen, yeast cells bound to the marginal zones. In both tissues, an association of yeast cells with tissue macrophages was suggested by results with macrophage-specific monoclonal antibodies and fluorescent or immunoperoxidase staining techniques. C. albicans adhered to convoluted tubules, glomeruli, and the tunica media of arterioles in the kidney. During experimentally induced fungemia in mice, C. albicans yeast cells associated with the same tissue sites as in the ex vivo assay, except that binding to renal arterioles was not seen in the in vivo test. A strain of Saccharomyces cerevisiae showed some adherence patterns in common with C. albicans, which indicates that tissue adherence is not sufficient for virulence. Mechanisms of attachment were not determined, but strains of C. albicans varied quantitatively in their ability to attach, and binding was inhibited by chelators of divalent cations.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference38 articles.

1. Host-parasite interactions in the pathogenesis of experimental renal candidiasis;Barnes J. L.;Lab. Invest.,1983

2. Lymphocyte entry into inflammatory tissues in vivo: qualitative differences of high endothelial venule-like vessels in sponge matrix allografts vs isografts;Bishop D. K.;J. Immunol.,1989

3. Evidence for macrophage-mediated protection against lethal Candida albicans infection;Bistoni F.;Infect. Immun.,1986

4. Variability in expression of a cell surface determinant on Candida albicans as evidenced by an agglutinating monoclonal antibody;Brawner D. L.;Infect. Immun.,1984

5. Variability in expression of cell surface antigens of Candida albicans during morphogenesis;Brawner D. L.;Infect. Immun.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3