Bacteriophage P22-mediated specialized transduction in Salmonella typhimurium: identification of different types of specialized transducing particles

Author:

Kwoh D Y,Kemper J

Abstract

The temperate bacteriophage P22 mediates both generalized and specialized transduction in Salmonella typhimurium. Specialized transduction by phage P22 is different from, and less restricted than, the well characterized specialized transduction by phage lambda, due to differences in the phage DNA packaging mechanism. Phage lysates produced by induction of lysogenic strains contain very high frequencies of supQ newD- and proA,B-specialized transducing particles (10(-2)/PFU and 10(-3)/PFU, respectively), most of which are produced by independent aberrant excision events of various types. In a model, 12 different modes of transduction mechanisms were characterized by: (i) the structure of the specialized transducing genomes after injection into a new host cell, i.e., linear or circular, and (ii) the requirements for the transduction process, i.e., host recombination functions, phage integration functions, or presence of a prophage. By using different recipient strains and phage helper strains, it was possible to show that most specialized transducing particles (ca. 99%) contain linear genomes that cannot circularize upon injection into a new host cell and that require the presence of an integrated prophage as a site for a recombinational event to give rise to a transductant. Only 0.1% of all specialized transducing particles were shown to transduce by integration, suggesting that transducing genomes containing terminally redundant ends represent only a minor fraction of all transducing particles that are produced. However, it should be pointed out that the frequency (approximately 10(-5)/PFU) of these specialized transducing genomes that can circularize upon injection into a new host cell is as high as or even higher than the frequency of specialized transducing particles of phage lambda. The remaining approximately 1% of all specialized transducing particles can transduce by any one of the other mechanisms described.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3