Role of RpoS in the Virulence of Citrobacter rodentium

Author:

Dong Tao1,Coombes Brian K.2,Schellhorn Herb E.1

Affiliation:

1. Department of Biology, Life Sciences Building, Rm. 433, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada

2. Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, 4H17, McMaster University, 1200 Main St. West, Hamilton, Ontario L8N 3Z5, Canada

Abstract

ABSTRACT Citrobacter rodentium is a mouse enteropathogen that is closely related to Escherichia coli and causes severe colonic hyperplasia and bloody diarrhea. C. rodentium infection requires expression of genes of the locus of enterocyte effacement (LEE) pathogenicity island, which simulates infection by enteropathogenic E. coli and enterohemorrhagic E. coli in the human intestine, providing an effective model for studying enteropathogenesis. In this study we investigated the role of RpoS, the stationary phase sigma factor, in virulence in C. rodentium . Sequence analysis showed that the rpoS gene is highly conserved in C. rodentium and E. coli , exhibiting 92% identity. RpoS was critical for survival under heat shock conditions and during exposure to H 2 O 2 and positively regulated the expression of catalase KatE (HPII). The development of the RDAR ( r ed d ry a nd r ough) morphotype, an important virulence trait in E. coli , was also mediated by RpoS in C. rodentium . Unlike E. coli, C. rodentium grew well in the mouse colon, and the wild-type strain colonized significantly better than rpoS mutants. However, a mutation in rpoS conferred a competitive growth advantage over the wild type both in vitro in Luria-Bertani medium and in vivo in the mouse colon. Survival analysis showed that the virulence of an rpoS mutant was attenuated. The expression of genes on the LEE pathogenicity island, which are essential for colonization and virulence, was reduced in the rpoS mutant. In conclusion, RpoS is important for the stress response and is required for full virulence in C. rodentium .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3