Arrangement and Regulation of the Nitrogen Fixation Genes in Klebsiella pneumoniae Studied by Derepression Kinetics

Author:

Collmer Alan1,Lamborg Marvin1

Affiliation:

1. Charles F. Kettering Research Laboratory, Yellow Springs, Ohio 45387

Abstract

Events underlying derepression of the nitrogen fixation ( nif ) genes in Klebsiella pneumoniae M5A1 were analyzed in vivo by comparing the effects of selective inhibitors of transcription and translation on subsequent nitrogenase activity (rate of acetylene reduction). When batch cultures were induced for derepression, an 87-min lag separated ammonium ion/oxygen removal and the appearance of activity. To prevent eventual activity by adding inhibitors during this period, it was found necessary to add rifampin, ammonium ion, or chloramphenicol more than 50, 20, or 10 min, respectively, before activity appeared in a parallel control. When these inhibitors were added to cultures in which nitrogenase activity had already appeared, further increase in activity was not stopped by rifampin or ammonium ion until 45 or 20 min, respectively, after addition. Chloramphenicol stopped further increase in nitrogenase activity almost immediately. These data indicated a nif operon whose transcription/translation consumes 40 min. When the kinetics of β-galactosidase induction were analyzed under similar conditions, it was found that 7 min separated the initiation of transcription and the first completions of translation. Extrapolating from this, we find the nif operon to occupy 17 average gene lengths. It is argued that the nif structural genes in K. pneumoniae are contained on one operon, and further, that the disparity between the kinetics of inhibition by rifampin and those by ammonium ion suggests regulation at a locus other than the operator.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference31 articles.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3