Affiliation:
1. Charles F. Kettering Research Laboratory, Yellow Springs, Ohio 45387
Abstract
Events underlying derepression of the nitrogen fixation (
nif
) genes in
Klebsiella pneumoniae
M5A1 were analyzed in vivo by comparing the effects of selective inhibitors of transcription and translation on subsequent nitrogenase activity (rate of acetylene reduction). When batch cultures were induced for derepression, an 87-min lag separated ammonium ion/oxygen removal and the appearance of activity. To prevent eventual activity by adding inhibitors during this period, it was found necessary to add rifampin, ammonium ion, or chloramphenicol more than 50, 20, or 10 min, respectively, before activity appeared in a parallel control. When these inhibitors were added to cultures in which nitrogenase activity had already appeared, further increase in activity was not stopped by rifampin or ammonium ion until 45 or 20 min, respectively, after addition. Chloramphenicol stopped further increase in nitrogenase activity almost immediately. These data indicated a
nif
operon whose transcription/translation consumes 40 min. When the kinetics of β-galactosidase induction were analyzed under similar conditions, it was found that 7 min separated the initiation of transcription and the first completions of translation. Extrapolating from this, we find the
nif
operon to occupy 17 average gene lengths. It is argued that the
nif
structural genes in
K. pneumoniae
are contained on one operon, and further, that the disparity between the kinetics of inhibition by rifampin and those by ammonium ion suggests regulation at a locus other than the operator.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献