The NF90-NF45 Complex Functions as a Negative Regulator in the MicroRNA Processing Pathway

Author:

Sakamoto Shuji12,Aoki Kazuma23,Higuchi Takuma1,Todaka Hiroshi1,Morisawa Keiko1,Tamaki Nobuyuki24,Hatano Etsuro4,Fukushima Atsuki5,Taniguchi Taketoshi1,Agata Yasutoshi26

Affiliation:

1. Laboratory of Molecular Biology, Science Research Center, Kochi Medical School, Kochi 783-8505, Japan

2. Horizontal Medical Research Organization, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan

3. Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, Japan Biological Informatics Consortium, Tokyo, Japan

4. Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan

5. Department of Ophthalmology, Kochi Medical School, Kochi 783-8505, Japan

6. Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan

Abstract

ABSTRACT The positive regulatory machinery in the microRNA (miRNA) processing pathway is relatively well characterized, but negative regulation of the pathway is largely unknown. Here we show that a complex of nuclear factor 90 (NF90) and NF45 proteins functions as a negative regulator in miRNA biogenesis. Primary miRNA (pri-miRNA) processing into precursor miRNA (pre-miRNA) was inhibited by overexpression of the NF90 and NF45 proteins, and considerable amounts of pri-miRNAs accumulated in cells coexpressing NF90 and NF45. Treatment of cells overexpressing NF90 and NF45 with an RNA polymerase II inhibitor, α-amanitin, did not reduce the amounts of pri-miRNAs, suggesting that the accumulation of pri-miRNAs is not due to transcriptional activation. In addition, the NF90 and NF45 complex was not found to interact with the Microprocessor complex, which is a processing factor of pri-miRNAs, but was found to bind endogenous pri-miRNAs. NF90-NF45 exhibited higher binding activity for pri-let-7a than pri-miR-21. Of note, depletion of NF90 caused a reduction of pri-let-7a and an increase of mature let-7a miRNA, which has a potent antiproliferative activity, and caused growth suppression of transformed cells. These findings suggest that the association of the NF90-NF45 complex with pri-miRNAs impairs access of the Microprocessor complex to the pri-miRNAs, resulting in a reduction of mature miRNA production.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 160 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3