Alpha-Synuclein Expression Restricts RNA Viral Infections in the Brain

Author:

Beatman Erica L.1,Massey Aaron1,Shives Katherine D.12,Burrack Kristina S.2,Chamanian Mastooreh1,Morrison Thomas E.2,Beckham J. David132

Affiliation:

1. Department of Medicine, Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA

2. Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA

3. Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA

Abstract

ABSTRACT We have discovered that native, neuronal expression of alpha-synuclein (Asyn) inhibits viral infection, injury, and disease in the central nervous system (CNS). Enveloped RNA viruses, such as West Nile virus (WNV), invade the CNS and cause encephalitis, yet little is known about the innate neuron-specific inhibitors of viral infections in the CNS. Following WNV infection of primary neurons, we found that Asyn protein expression is increased. The infectious titer of WNV and Venezuelan equine encephalitis virus (VEEV) TC83 in the brains of Asyn-knockout mice exhibited a mean increase of 10 4.5 infectious viral particles compared to the titers in wild-type and heterozygote littermates. Asyn-knockout mice also exhibited significantly increased virus-induced mortality compared to Asyn heterozygote or homozygote control mice. Virus-induced Asyn localized to perinuclear, neuronal regions expressing viral envelope protein and the endoplasmic reticulum (ER)-associated trafficking protein Rab1. In Asyn-knockout primary neuronal cultures, the levels of expression of ER signaling pathways, known to support WNV replication, were significantly elevated before and during viral infection compared to those in Asyn-expressing primary neuronal cultures. We propose a model in which virus-induced Asyn localizes to ER-derived membranes, modulates virus-induced ER stress signaling, and inhibits viral replication, growth, and injury in the CNS. These data provide a novel and important functional role for the expression of native alpha-synuclein, a protein that is closely associated with the development of Parkinson's disease. IMPORTANCE Neuroinvasive viruses such as West Nile virus are able to infect neurons and cause severe disease, such as encephalitis, or infection of brain tissue. Following viral infection in the central nervous system, only select neurons are infected, implying that neurons exhibit innate resistance to viral infections. We discovered that native neuronal expression of alpha-synuclein inhibited viral infection in the central nervous system. When the gene for alpha-synuclein was deleted, mice exhibited significantly decreased survival, markedly increased viral growth in the brain, and evidence of increased neuron injury. Virus-induced alpha-synuclein localized to intracellular neuron membranes, and in the absence of alpha-synuclein expression, specific endoplasmic reticulum stress signaling events were significantly increased. We describe a new neuron-specific inhibitor of viral infections in the central nervous system. Given the importance of alpha-synuclein as a cause of Parkinson's disease, these data also ascribe a novel functional role for the native expression of alpha-synuclein in the CNS.

Funder

University of Colorado Anschutz Medical Campus Center for Neuroscience

University of Colorado Department of Medicine

NIH/NIAID

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 165 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3