Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin

Author:

Douce G1,Fontana M1,Pizza M1,Rappuoli R1,Dougan G1

Affiliation:

1. Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, United Kingdom.

Abstract

Genetically modified derivatives of cholera toxin (CT), harboring a single amino acid substitution in and around the NAD binding cleft of the A subunit, were isolated following site-directed mutagenesis of the ctxA gene. Two mutants of CT, designated CTS106 (with a proline-to-serine change at position 106) and CTK63 (with a serine-to-lysine change at position 63), were found to have substantially reduced ADP-ribosyltransferase activity and toxicity; CTK63 was completely nontoxic in all assays, whereas CTS106 was 10(4) times less toxic than wild-type CT. The mucosal adjuvanticity and immunogenicity of derivatives of CT were assessed by intranasal immunization of mice, with either ovalbumin or fragment C of tetanus toxin as a bystander antigen. Mice immunized with wild-type CT produced both local (immunoglobulin A in mucosal washes) and systemic immune responses to both CT and bystander antigens. CTS106 showed good local and systemic responses to bystander proteins and to itself. Interestingly, mice immunized with the nontoxic derivative of CT, CTK63, generated weak immune responses to the bystander antigens which were similar to those achieved when CT B subunit was used as an adjuvant. In parallel experiments, an equivalent nontoxic mutant of the Escherichia coli heat-labile enterotoxin, LTK63 (with a serine-to-lysine change at position 63), was tested (9). In contrast to CTK63, LTK63 was found to be more immunogenic and a better intranasal adjuvant than recombinant heat-labile enterotoxin B subunit or CTK63. This information, together with data on immunoglobulin subclass responses, suggests that although highly homologous, CT and heat-labile enterotoxin should not be considered biologically identical in terms of their ability to act as intranasal adjuvants.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3