Analysis of F1F0-ATPase from Helicobacter pylori

Author:

McGowan C C1,Cover T L1,Blaser M J1

Affiliation:

1. Department of Medicine, Vanderbilt University School of Medicine, and Department of Veterans Affairs Medical Center, Nashville, Tennessee 37232-2605, USA. mcgowacc@ctrvax.vanderbilt.edu

Abstract

The adaptive mechanisms that permit Helicobacter species to survive within the gastric mucosa are not well understood. The proton-translocating F1F0-ATPase is an important enzyme for regulating intracellular pH or synthesizing ATP in many other enteric bacteria; therefore, we used degenerate primers derived from conserved bacterial F1F0-ATPase sequences to PCR amplify and clone the gene (atpD) encoding the H. pylori F1F0-ATPase beta subunit. The deduced amino acid sequences of the F1F0-ATPase beta subunits from H. pylori and Wolinella succinogenes were 85% identical (91% similar). To characterize a potential functional role of F1F0-ATPase in H. pylori, H. pylori or Escherichia coli cells were incubated for 60 min in buffered solutions at pH 7, 6, 5, or 4, with or without 100 microM N,N'-dicyclohexylcarbodiimide (DCCD), a specific inhibitor of F1F0-ATPase. At pH 5 and 4, there was no significant decrease in survival of H. pylori in the presence of DCCD compared to its absence, whereas incubation with DCCD at pH 7 and 6 significantly decreased H. pylori survival. E. coli survival was unaffected by DCCD at any pH value tested. We next disrupted the cloned beta-subunit sequence in E. coli by insertion of a kanamycin resistance cassette and sought to construct an isogenic F1F0-ATPase H. pylori mutant by natural transformation and allelic exchange. In multiple transformations of H. pylori cells grown at pH 6 or 7, no kanamycin-resistant F1F0 mutants were isolated, despite consistently successful mutagenesis of other H. pylori genes by using a similar approach and PCR experiments providing evidence for integration of the kanamycin resistance cassette into atpD. The sensitivity of H. pylori to DCCD at pH 7 and 6, and failure to recover F1F0 H. pylori mutants under similar conditions, suggests that the function of this enzyme is required for survival of H. pylori at these pHs.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Reference48 articles.

1. Partial characterization and effect of omeprazole on ATPase activity in Helicobacter pylori by using permeabilized cells;Belli W. A.;Antimicrob. Agents Chemother.,1995

2. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci;Bender G. R.;Infect. Immun.,1986

3. Ordered cosmid library and highresolution physical-genetic map of Helicobacter pylori strain NCTC1638;Bukanov N. O.;Mol. Microbiol.,1994

4. Ultrastructure of the gastric mucosa harboring Campylobacter-like organisms;Chen X. G.;Am. J. Clin. Pathol.,1986

5. Helicobacter pylori infection, a paradigm for chronic mucosal inflammation: pathogenesis and implications for eradication and prevention;Cover T. L.;Adv. Intern. Med.,1996

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3