Affiliation:
1. Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo-Escola Paulista de Medicina, S.P. Brazil.
Abstract
Trypanosoma cruzi, the parasite that causes Chagas' disease, proliferates in the cytosol of mammalian cells. When the trypomastigote forms exit the infected cell, they become extensively sialylated because the parasite contains an enzyme called trans-sialidase. This enzyme efficiently catalyzes the transfer of bound sialic acid residues from host glycoconjugates to acceptors containing terminal beta-galactosyl residues on the parasite surface. The sialic acid acceptors are developmentally regulated mucin-like glycoproteins that are extremely abundant on the trypomastigote surface. In the present study, we determined whether passive transfer of monoclonal antibodies specific for sialic acid acceptors could reduce the acute infection induced by T. cruzi in a highly susceptible mouse strain. We found that passive transfer to naive mice of an immunoglobulin G1 monoclonal antibody directed to a sialylated epitope of these mucin-like glycoproteins significantly decreased parasitemia and the number of tissue parasites as measured by a DNA probe specific for T. cruzi. Upon challenge with trypomastigotes, mice which received this antibody also had a significant increase in survival. A statistically significant reduction in parasitemia could be accomplished with relatively small doses of immunoglobulin, and Fab fragments alone could not mediate protective immunity. The precise mechanism of parasite elimination is unknown; however, this monoclonal antibody does not lyse trypomastigotes in vitro in the presence of human complement or mouse spleen cells.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献