Adhesive properties and antibiotic resistance of Klebsiella, Enterobacter, and Serratia clinical isolates involved in nosocomial infections

Author:

Livrelli V1,De Champs C1,Di Martino P1,Darfeuille-Michaud A1,Forestier C1,Joly B1

Affiliation:

1. Laboratoire de Bactériologie, Faculté de Pharmacie, Université d'Auvergne, France.

Abstract

Intestinal colonization by Klebsiella, Enterobacter, and Serratia (KES) strains is a crucial step in the development of nosocomial infections. We studied the adhesive properties, antibiotic resistance, and involvement in colonization or infection of 103 KES clinical isolates: 30 Klebsiella pneumoniae (29%), 16 Klebsiella oxytoca (15%), 30 Enterobacter aerogenes (29%), 14 Enterobacter cloacae (14%), and 13 Serratia sp. (13%) isolates. Half of them were resistant to several antimicrobial agents, including aminoglycosides and beta-lactam antibiotics. A total of 27 of 30 K. pneumoniae isolates (90%) adhered to the human cell line Intestine-407 (Int-407), while none of the K. oxytoca or E. aerogenes isolates and only 2 of the E. cloacae isolates adhered. Three adhesive patterns were observed for K. pneumoniae: an aggregative adhesion in 57% of the isolates, a diffuse adhesion in only one isolate, and a new pattern, localized adhesion, in 30% of the isolates. While most of the sensitive strains adhered with the aggregative phenotype, the localized pattern was associated with resistant K. pneumoniae isolates producing the CAZ-5 beta-lactamase. Furthermore, 45% of such localized-adhesion isolates were involved in severe infections. The distributions of type 1 and type 3 fimbriae, enteroaggregative E. coli, and cf29, pap, and afa/Dr adhesin-encoding genes were determined by using specific DNA probes. No relationship was found between the adhesive pattern and the production of specific fimbriae, suggesting that several unrecognized adhesive factors are involved. Our study indicates that special adhesive properties associated with resistance to antimicrobial agents could account for the pathogenicity of certain nosocomial strains.

Publisher

American Society for Microbiology

Subject

Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3