Alkaline phosphatase secretion-negative mutant of Bacillus licheniformis 749/C

Author:

Kumar R,Ghosh A,Ghosh B K

Abstract

An alkaline phosphatase secretion-blocked mutant of Bacillus licheniformis 749/C was isolated. This mutant had defects in the phoP and phoR regions of the chromosome. The selection procedure was based on the rationale that N-methyl-N'-nitro-N-nitrosoguanidine can induce mutations of closely linked multiple genes. The malate gene and the phoP and phoR genes are located at the 260-min position in the Bacillus subtilis chromosome; hence, the malate gene could be used as a marker for the mutation of the phoP and phoR regions of the chromosome. In a two-step selection procedure, strains defective in malate utilization were first selected with the cephalosporin C procedure. Second, these malate-defective strains were further screened in a dye medium to select strains with defects in alkaline phosphatase secretion. One stable mutant (B. licheniformis 749/cNM 105) had a total secretion block for alkaline phosphatase and had the following additional characteristics: (i) the amount of alkaline phosphatase synthesized was comparable to that in the wild type; (ii) the alkaline phosphatase was membrane bound; (iii) the mutant strain alkaline phosphatase, in contrast to that of the wild type, could not be extracted with MgCl2, although the amounts of protein extracted from each strain were comparable; (iv) the sodium dodecyl sulfate-polyacrylamide gel pattern of MgCl2-extracted proteins from the mutant strain was different from that of the wild-type proteins; (v) the mutant, unlike the wild type, could not use malate as a sole source of carbon; and (vi) the outside surface of the wall of the mutant cells contained an additional electron-dense layer that was not present on the wild-type cell wall surface.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference42 articles.

1. Optimal conditions for mutagenesis by N-methyl-N'-nitro-N-nitrosoguanidine in Escherichia coli K12;Adelberg E. A.;Biochem. Biophys. Res. Commun.,1965

2. Intracellular protein topogenesis;Blobel G.;Proc. Natl. Acad. Sci. U.S.A.,1980

3. Amino acid sequences of transport peptide associated with canine exocrine pancreatic proteins;Carne T.;J. Brol. Chem.,1982

4. The replication of Escherichia coli chromosome studied by sequential nitrosoguanidine mutagenesis;Cerd E.;Cold Spring Harbor Symp. Quant. Biol.,1968

5. Identification of the signal peptidase cleavage site in Bacillus licheniformis prepenicillinase;Chang C. N.;J. Biol. Chem.,1982

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3