Translation elongation factor-1 alpha interacts with the 3' stem-loop region of West Nile virus genomic RNA

Author:

Blackwell J L1,Brinton M A1

Affiliation:

1. Department of Biology, Georgia State University, Atlanta 30302-4010, USA.

Abstract

The conserved 3'-terminal stem-loop (3' SL) of the West Nile virus (WNV) genomic RNA was previously used to probe for cellular proteins that may be involved in flavivirus replication and three cellular proteins were detected that specifically interact with the WNV 3' SL RNA (J. L. Blackwell and M. A. Brinton, J. Virol. 69:5650-5658, 1995). In this study, one of these cellular proteins was purified to apparent homogeneity by ammonium sulfate precipitation and liquid chromatography. Amino acid sequence Western blotting, and supershift analyses identified the cellular protein as translation elongation factor-1 alpha (EF-1 alpha). Competition gel mobility shift assays demonstrated that the interaction between EF-1 alpha and WNV 3' SL RNA was specific. Dephosphorylation of EF-1 alpha by calf intestinal alkaline phosphatase inhibited its binding to WNV 3' SL RNA. The apparent equilibrium dissociation constant for the interaction between EF-1 alpha and WNV 3' SL RNA was calculated to be 1.1 x 10(-9) M. Calculation of the stoichiometry of the interaction indicated that one molecule of EF-1 alpha binds to each molecule of WNV 3' SL RNA. Using RNase footprinting and nitrocellulose filter binding assays, we detected a high-activity binding site on the main stem of the WNV 3' SL RNA. Interaction with EF-1 alpha at the high-activity binding site was sequence specific, since nucleotide substitution in this region reduced the binding activity of the WNV 3' SL RNA for EF-1 alpha by approximately 60%. Two low-activity binding sites were also detected, and each accounted for approximately 15 to 20% of the binding activity. Intracellular association between the host protein and the viral RNA was suggested by coimmunoprecipitation of WNV genomic RNA and EF-1 alpha, using an anti-EF-1 alpha antibody.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 213 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3