Bile-Inducible Efflux Transporter from Bifidobacterium longum NCC2705, Conferring Bile Resistance

Author:

Gueimonde Miguel1,Garrigues Christel2,van Sinderen Douwe3,de los Reyes-Gavilán Clara G.1,Margolles Abelardo1

Affiliation:

1. Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Villaviciosa, Asturias, Spain

2. Department of Physiology, Cultures and Enzymes Division, Chr. Hansen A/S, Hørsholm, Denmark

3. Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland

Abstract

ABSTRACT Bifidobacteria are normal inhabitants of the human gut. Some strains of this genus are considered health promoting or probiotic, being included in numerous food products. In order to exert their health benefits, these bacteria must overcome biological barriers, including bile salts, to colonize and survive in specific parts of the intestinal tract. The role of multidrug resistance (MDR) transporters in bile resistance of probiotic bacteria and the effect of bile on probiotic gene expression are not fully understood. In the present study, the effect of subinhibitory concentrations of bile on the expression levels of predicted MDR genes from three different bifidobacterial strains, belonging to Bifidobacterium longum subsp. longum, Bifidobacterium breve , and Bifidobacterium animalis subsp. lactis , was tested. In this way, two putative MDR genes whose expression was induced by bile, BL0920 from B. longum and its homolog, Bbr0838, from B. breve , were identified. The expression of the BL0920 gene in Escherichia coli was shown to confer resistance to bile, likely to be mediated by active efflux from the cells. To the best of our knowledge, this represents the first identified bifidobacterial bile efflux pump whose expression is induced by bile.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3