Affiliation:
1. Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, NL-6525 ED Nijmegen, The Netherlands
Abstract
ABSTRACT
Anaerobic methane oxidation coupled to denitrification was recently assigned to bacteria belonging to the uncultured phylum NC10. In this study, we incubated sediment from a eutrophic ditch harboring a diverse community of NC10 bacteria in a bioreactor with a constant supply of methane and nitrite. After 6 months, fluorescence in situ hybridization showed that NC10 bacteria dominated the resulting population. The enrichment culture oxidized methane and reduced nitrite to dinitrogen gas. We assessed NC10 phylum diversity in the inoculum and the enrichment culture, compiled the sequences currently available for this bacterial phylum, and showed that of the initial diversity, only members of one subgroup had been enriched. The growth of this subgroup was monitored by quantitative PCR and correlated to nitrite-reducing activity and the total biomass of the culture. Together, the results indicate that the enriched subgroup of NC10 bacteria is responsible for anaerobic methane oxidation coupled to nitrite reduction. Due to methodological limitations (a strong bias against NC10 bacteria in 16S rRNA gene clone libraries and inhibition by commonly used stopper material) the environmental distribution and importance of these bacteria could be largely underestimated at present.
Publisher
American Society for Microbiology
Subject
Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology
Reference38 articles.
1. Bakermans, C., and E. L. Madsen. 2002. Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tar-waste-contaminated aquifer waters. Microb. Ecol.44:95-106.
2. Bjerg, P. L., K. Rugge, J. K. Pedersen, and T. H. Christensen. 1995. Distribution of redox-sensitive groundwater quality parameters downgradient of a landfill (Grindsted, Denmark). Environ. Sci. Technol.29:1387-1394.
3. Microzonation of Denitrification Activity in Stream Sediments as Studied with a Combined Oxygen and Nitrous Oxide Microsensor
4. Daims, H., A. Brühl, R. Amann, K.-H. Schleifer, and M. Wagner. 1999. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol.22:434-444.
5. Dedysh, S. N., N. S. Panikov, W. Liesack, R. Grosskopf, J. Z. Zhou, and J. M. Tiedje. 1998. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science282:281-284.
Cited by
456 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献