Affiliation:
1. Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida
2. Onderstepoort Veterinary Research Institute, Pretoria, South Africa
Abstract
ABSTRACT
Proteins expressed from the
map1
multigene family of
Ehrlichia ruminantium
are strongly recognized by immune T and B cells from infected animals or from animals that were infected and have recovered from heartwater disease (although still remaining infected carriers). Analogous multigene clusters also encode the immunodominant outer membrane proteins (OMPs) in other ehrlichial species. Recombinant protein analogs of the expressed genes and DNA vaccines based on the multigene clusters have been shown to induce protective immunity, although this was less effective in heterologous challenge situations, where the challenge strain major antigenic protein 1 (MAP1) sequence differed from the vaccine strain MAP1. Recent data for several ehrlichial species show differential expression of the OMPs in mammalian versus tick cell cultures and dominant expression of individual family members in each type of culture system. However, many genes in the clusters appear to be complete and functional and to generate mRNA transcripts. Recent data also suggest that there may be a low level of protein expression from many members of the multigene family, despite primary high-level expression from an individual member. A continuing puzzle, therefore, is the biological roles of the different members of these OMP multigene families. Complete genome sequences are now available for two geographically divergent strains of
E. ruminantium
(Caribbean and South Africa strains). Comparison of these sequences revealed amino acid sequence diversity in MAP1 (89% identity), which is known to confer protection in a mouse model and to be the multigene family member primarily expressed in mammalian cells. Surprisingly, however, the greatest sequence diversity (79% identity) was in the less-studied
map1-2
gene. We investigated here whether this
map1-2
diversity was a general feature of
E. ruminantium
in different cultured African strains and in organisms from infected sheep. Comparison of MAP1-2s revealed amino acid identities of 75 to 100% (mean of 86%), compared to 84 to 100% (mean of 89%) for MAP1s. Interestingly, MAP1-2s varied independently of MAP1s such that
E. ruminantium
strains with similar MAP1s had diverse MAP1-2s and vice versa. Different MAP1-2s were found in individual infected sheep. Different regions of a protein may be subjected to different evolutionary forces because of recombination and/or selection, which results in those regions not agreeing with a phylogeny deduced from the whole molecule. This appears to be true for both MAP1 and MAP1-2, where statistical likelihood methods detect heterogeneous evolutionary rates for segments of both molecules. Sera from infected cattle recognized a MAP1-2 variable-region peptide in enzyme-linked immunosorbent assay, but less strongly and consistently than a MAP1 peptide (MAP1B). Heterologous protective immunity may depend on recognition of a complex set of varying OMP epitopes.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献