Metabolic activation of 9([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine in human lymphoblastoid cell lines infected with Epstein-Barr virus

Author:

Lin J C,Nelson D J,Lambe C U,Choi E I

Abstract

9-([2-Hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine (BW B759U) is more potent and has a more prolonged inhibitory effect against Epstein-Barr virus (EBV) in vitro than does acyclovir (ACV). To assess the mechanism of this difference, we first compared the extent of phosphorylation of the two drugs in superinfected Raji cells. BW B759U is phosphorylated to levels 100-fold higher than is ACV. In addition, lower levels of phosphorylation of BW B759U and ACV were observed in uninfected Raji cells. Studies on the kinetics of formation of BW B759U triphosphate in superinfected Raji cells indicated that drug-phosphorylating activity was detected as early as 3 h after superinfection; this activity was steadily maintained for the first 7 h, followed by a burst of activity between 7 and 10 h and a doubling of phosphorylation between 10 and 25 h. During the superinfection cycle, the pool sizes of deoxyribonucleoside and ribonucleoside triphosphates were increased and reached their maxima at 10 h after infection. The maximal amount of triphosphorylated drug in a virus producer cell, P3HR-1 (LS), was obtained at 21 h after drug treatment. During long-term drug treatment, approximately 44 and 77% reduction in EBV genome copies per cell was observed on days 3 and 7, respectively. In a separate experiment, after treatment of P3HR-1 (LS) cells with BW B759U for 36 h, 4.2 pmol of BW B759U triphosphate per 10(6) cells was achieved. After the cells were released into drug-free medium, drug triphosphate was rapidly decreased to 11% of the original level in 1 day. Thereafter, the decrease was slow but steady, down to 0.22 pmol/10(6) P3HR-1 cells by 5 days. We calculated that 0.22 pmol of BW B759U triphosphate per 10(6) cells represents a cellular concentration of 0.22 microM, which is theoretically enough to inhibit EBV replication. This is based upon a comparison with the 50% effective dose of BW B759U (0.05 microM) for inhibition of genome replication and a Ki of 0.08 microM for BW B759U triphosphate inhibition of EBV DNA polymerase.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3