Seasonal Fluctuations and Long-Term Persistence of Pathogenic Populations of Agrobacterium spp. in Soils

Author:

Krimi Z.1,Petit A.2,Mougel C.3,Dessaux Y.2,Nesme X.4

Affiliation:

1. Département de Foresterie, Faculté des Sciences, Université de Tlemcen, Tlemcen 13000, Algeria

2. Institut des Sciences Végétales, CNRS, F-91198 Gif-sur-Yvette Cedex

3. BBCE-IPM, UMR INRA 1088, F-21065 Dijon Cedex,

4. Ecologie Microbienne, Université Claude Bernard-Lyon 1, UMR CNRS 5557, and INRA, F-69622 Villeurbanne Cedex, France

Abstract

ABSTRACT Short- and long-term persistence of pathogenic (i.e., tumor forming) agrobacteria in soil was investigated in six nursery plots with a history of high crown gall incidence. No pathogenic Agrobacterium strains were isolated in soil samples taken in fall and winter in any plots, but such strains were isolated from both bulk soils and weed rhizospheres (over 0.5 × 10 5 pathogenic CFU/g of bulk soil or rhizosphere) in three out of six plots in spring and summer. PCR amplifications of a vir sequence from DNA extracted from soil confirmed the presence of Ti plasmids in summer and their absence in fall and winter. The results indicate that strains that harbor a Ti plasmid had an unforeseen positive fitness versus Ti plasmid-free strains in soil and rhizosphere in spring and summer in spite of the apparent absence of tumor, and hence of opines. The gain of fitness occurred during a bloom of all cultivable agrobacteria observed only in conducive soils. An evolution of the pathogenic population was recorded during a 4-year period in one particularly conducive soil. In 1990, the pathogenic population in this soil consisted of only biovar 1 strains harboring both octopine- and nopaline-type Ti plasmids. In 1994, it consisted of only nopaline-type Ti plasmids equally distributed among biovar 1 and 2 strains. These results suggest that nopaline-type Ti plasmids conferred a better survival ability than octopine-type Ti plasmids to biovar 2 agrobacteria under the present field conditions.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3