Upregulation of MicroRNA-146a by Hepatitis B Virus X Protein Contributes to Hepatitis Development by Downregulating Complement Factor H

Author:

Li Jun-Feng1,Dai Xiao-Peng1,Zhang Wei1,Sun Shi-Hui1,Zeng Yang1,Zhao Guang-Yu1,Kou Zhi-Hua1,Guo Yan1,Yu Hong1,Du Lan-Ying2,Jiang Shi-Bo23,Zhou Yu-Sen1

Affiliation:

1. The State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China

2. Laboratory of Viral Immunology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA

3. Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College, Fudan University, Shanghai, China

Abstract

ABSTRACT Hepatic injuries in hepatitis B virus (HBV) patients are caused by immune responses of the host. In our previous study, microRNA-146a (miR-146a), an innate immunity-related miRNA, and complement factor H (CFH), an important negative regulator of the alternative pathway of complement activation, were differentially expressed in HBV-expressing and HBV-free hepatocytes. Here, the roles of these factors in HBV-related liver inflammation were analyzed in detail. The expression levels of miR-146a and CFH in HBV-expressing hepatocytes were assessed via analyses of hepatocyte cell lines, transgenic mice, adenovirus-infected mice, and HBV-positive human liver samples. The expression level of miR-146a was upregulated in HBV-expressing Huh-7 hepatocytes, HBV-expressing mice, and patients with HBV infection. Further results demonstrated that the HBV X protein (HBx) was responsible for its effects on miR-146a expression through NF-κB-mediated enhancement of miR-146a promoter activity. HBV/HBx also downregulated the expression of CFH mRNA in hepatocyte cell lines and the livers of humans and transgenic mice. Furthermore, overexpression and inhibition of miR-146a in Huh-7 cells downregulated and upregulated CFH mRNA levels, respectively. Luciferase reporter assays demonstrated that miR-146a downregulated CFH mRNA expression in hepatocytes via 3′-untranslated-region (UTR) pairing. The overall effect of this process in vivo is to promote liver inflammation. These results demonstrate that the HBx–miR-146a–CFH–complement activation regulation pathway might play an important role in the immunopathogenesis of chronic HBV infection. These findings have important implications for understanding the immunopathogenesis of chronic hepatitis B and developing effective therapeutic interventions. IMPORTANCE Hepatitis B virus (HBV) remains an important pathogen and can cause severe liver diseases, including hepatitis, liver cirrhosis, and hepatocellular carcinoma. Although HBV was found in 1966, the molecular mechanisms of pathogenesis are still poorly understood. In the present study, we found that the HBV X protein (HBx) promoted the expression of miR-146a, an innate immunity-related miRNA, through the NF-κB signal pathway and that increasingly expressed miR-146a downregulated its target complement factor H (CFH), an important negative regulator of the complement alternative pathway, leading to the promotion of liver inflammation. We demonstrated that the HBx–miR-146a–CFH–complement activation regulation pathway is potentially an important mechanism of immunopathogenesis caused by chronic HBV infection. Our data provide a novel molecular mechanism of HBV pathogenesis and thus help to understand the correlations between the complement system, an important part of innate immunity, and HBV-associated disease. These findings will also be important to identify potential therapeutic targets for HBV infection.

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3