Possible Role of a Cell Surface Carbohydrate in Evolution of Resistance to Viral Infections in Old World Primates

Author:

Rodriguez Idalia A.12,Welsh Raymond M.2

Affiliation:

1. Department of Anthropology, University of Massachusetts at Amherst, Amherst, Massachusetts, USA

2. Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA

Abstract

ABSTRACT Due to inactivation of the α1,3-galactosyltransferase gene ( GGTA1 , or the α1,3GT gene) approximately 28 million years ago, the carbohydrate αGal (Galα1,3Galβ1,4GlcNAc) is not expressed on the cells of Old World monkeys and apes (including humans) but is expressed in all other mammals. The proposed selective advantage of this mutation for these primates is the ability to produce anti-Gal antibodies, which may be an effective immune component in neutralizing αGal-expressing pathogens. However, loss of α1,3GT expression may have been advantageous by providing natural resistance against viral pathogens that exploited the α1,3GT pathway or cell surface αGal for infection. Infections of paired cell lines with differential expression of α1,3GT showed that Sindbis viruses (SINV) preferentially replicate in α1,3GT-positive cells, whereas herpes simplex viruses type 1 and type 2 (HSV-1 and HSV-2) preferentially grow in cells lacking α1,3GT. Viral growth and spread correlated with the ability of the different viruses to successfully initiate infection in the presence or absence of α1,3GT expression. GT knockout (KO) suckling mice infected with SINV strains (AR339 and S.A.AR86) experienced significant delay in onset of disease symptoms and mortality compared to wild-type (WT) B6 suckling mice. In contrast, HSV-2-infected GT KO mice had higher viral titers in spleen and liver and exhibited significantly more focal hepatic necrosis than WT B6 mice. This study demonstrates that α1,3GT activity plays a role in the course of infections for certain viruses. Furthermore, this study has implications for the evolution of resistance to viral infections in primates.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3