The Adenovirus E1B 55-Kilodalton and E4 Open Reading Frame 6 Proteins Limit Phosphorylation of eIF2α during the Late Phase of Infection

Author:

Spurgeon Megan E.1,Ornelles David A.12

Affiliation:

1. Molecular Genetics and Genomics Program

2. Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064

Abstract

ABSTRACT During a productive infection, species C adenovirus reprograms the host cell to promote viral translation at the expense of cellular translation. The E1B 55-kilodalton (E1B-55K) and E4 open reading frame 6 (E4orf6) proteins are important in this control of gene expression. As part of a ubiquitin-protein ligase, these viral proteins stimulate viral mRNA export, inhibit cellular mRNA export, promote viral gene expression, and direct the degradation of certain host proteins. We report here that the E1B-55K and E4orf6 proteins limited phosphorylation of eIF2α and the activation of the eIF2α kinase PKR. Phospho-eIF2α levels were observed to rise and fall at least twice during infection. The E1B-55K and E4orf6 proteins prevented a third increase at late times of infection. PKR appeared to phosphorylate eIF2α only in the absence of E1B-55K/E4orf6 function. PKR activation and eIF2α phosphorylation was unrelated to the cytoplasmic levels of the adenovirus inhibitor of PKR, VA-I RNA. Nonetheless, expression of a PKR inhibitor, the reovirus double-stranded RNA-binding protein sigma 3, prevented PKR activation and eIF2α phosphorylation. The sigma 3 protein largely corrected the defect in viral late protein synthesis associated with the E1B-55K and E4orf6 mutant viruses without affecting cytoplasmic levels of the late viral mRNA. The ubiquitin-protein ligase activity associated with the E1B-55K/E4orf6 complex was necessary to prevent activation of PKR and phosphorylation of eIF2α. These findings reveal a new contribution of the E1B-55K/E4orf6 complex to viral late protein synthesis and the existence of multiple layers of regulation imposed on eIF2α phosphorylation and PKR activation in adenovirus-infected cells.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3