Affiliation:
1. Department of Microbiology, School of Medicine, University of Virginia, Charlottesville 22908.
Abstract
The involvement of an outer membrane transport component for vitamin B12 uptake in Salmonella typhimurium, analogous to the btuB product in Escherichia coli, was investigated. Mutants of S. typhimurium selected for resistance to bacteriophage BF23 carried mutations at the btuB locus (butBS) (formerly called bfe, at the analogous map position as the E. coli homolog) and were defective in high-affinity vitamin B12 uptake. The cloned E. coli btuB gene (btuBE) hybridized to S. typhimurium genomic DNA and restored vitamin B12 transport activity to S. typhimurium btuBS mutants. An Mr-60,000 protein in the S. typhimurium outer membrane was repressed by growth with vitamin B12 and was eliminated in a btuBS mutant. The btuBS product thus appears to play the same role in vitamin B12 transport by S. typhimurium as does the E. coli btuBE product. A second vitamin B12 transport system that is not present in E. coli was found by cloning a fragment of S. typhimurium DNA that complemented btuB mutants for vitamin B12 utilization. In addition to this plasmid with a 6-kilobase insert of S. typhimurium DNA, vitamin B12 utilization by E. coli btuB strains required the btuC and btuD products, necessary for transport across the cytoplasmic membrane, but not the btuE or tonB product. The plasmid conferred low levels of vitamin B12-binding and energy-dependent transport activity but not susceptibility to phage BF23 or utilization of dicyanocobinamide. The cloned S. typhimurium DNA encoding this new transport system did not hybridize to the btuBE gene or to E. coli chromosomal DNA and therefore does not carry the S. typhimurium btuBS locus. Increased production of an Mr -84,000 polypeptide associated with the outer membrane was seen. The new locus appears to be carried on the large plasmid in most S. typhimurium strains. Thus S. typhimurium possesses both high- and low-affinity systems for uptake of cobalamins across the outer membrane.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献