Genetic and physiological relationships among the miaA gene, 2-methylthio-N6-(delta 2-isopentenyl)-adenosine tRNA modification, and spontaneous mutagenesis in Escherichia coli K-12

Author:

Connolly D M1,Winkler M E1

Affiliation:

1. Department of Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611.

Abstract

The miaA tRNA modification gene was cloned and located by insertion mutagenesis and DNA sequence analysis. The miaA gene product, tRNA delta 2-isopentenylpyrophosphate (IPP) transferase, catalyzes the first step in the biosynthesis of 2-methylthio-N6-(delta 2-isopentenyl)-adenosine (ms2i6A) adjacent to the anticodon of several tRNA species. The translation start of miaA was deduced by comparison with mod5, which encodes a homologous enzyme in yeasts. Minicell experiments showed that Escherichia coli IPP transferase has a molecular mass of 33.5 kilodaltons (kDa). Transcriptional fusions, plasmid and chromosomal cassette insertion mutations, and RNase T2 mapping of in vivo miaA transcription were used to examine the relationship between miaA and mutL, which encodes a polypeptide necessary for methyl-directed mismatch repair. The combined results showed that miaA, mutL, and a gene that encodes a 47-kDa polypeptide occur very close together, are transcribed in the same direction in the order 47-kDa polypeptide gene-mutL-miaA, and likely form a complex operon containing a weak internal promoter. Three additional relationships were demonstrated between mutagenesis and the miaA gene or ms2i6A tRNA modification. First, miaA transcription was induced by 2-aminopurine. Second, chromosomal miaA insertion mutations increased the spontaneous mutation frequency with a spectrum distinct from mutL mutations. Third, limitation of miaA+ bacteria for iron, which causes tRNA undermodification from ms2i6A to i6A, also increased spontaneous mutation frequency. These results support the notion that complex operons organize metabolically related genes whose primary functions appear to be completely different. In addition, the results are consistent with the idea that mechanisms exist to increase spontaneous mutation frequency when cells need to adapt to environmental stress.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference63 articles.

1. Maturation of a hypermodified nucleoside in transfer RNA;Agris P. F.;Nucleic Acids Res.,1975

2. Structural features of the hisT operon of Escherichia coli K-12;Arps P. J.;Nucleic Acids Res.,1985

3. An unusual genetic link between vitamin B6 biosynthesis and tRNA pseudouridine modification in Escherichia coli K-12;Arps P. J.;J. Bacteriol.,1987

4. Structural analysis of the Escherichia coli K-12 hisT operon by using a kanamycin resistance cassette;Arps P. J.;J. Bacteriol.,1987

5. Ausubel F. M. R. Brent R. E. Kingston D. D. Moore J. G. Seidman J. A. Smith and K. Struhl (ed.). 1987. Current protocols in molecular biology. John Wiley & Sons Inc. New York.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3