Ammonium inhibition of nitrogenase activity in Herbaspirillum seropedicae

Author:

Fu H1,Burris R H1

Affiliation:

1. Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison 53706.

Abstract

The effect of oxygen, ammonium ion, and amino acids on nitrogenase activity in the root-associated N2-fixing bacterium Herbaspirillum seropedicae was investigated in comparison with Azospirillum spp. and Rhodospirillum rubrum. H. seropedicae is microaerophilic, and its optimal dissolved oxygen level is from 0.04 to 0.2 kPa for dinitrogen fixation but higher when it is supplied with fixed nitrogen. No nitrogenase activity was detected when the dissolved O2 level corresponded to 4.0 kPa. Ammonium, a product of the nitrogenase reaction, reversibly inhibited nitrogenase activity when added to derepressed cell cultures. However, the inhibition of nitrogenase activity was only partial even with concentrations of ammonium chloride as high as 20 mM. Amides such as glutamine and asparagine partially inhibited nitrogenase activity, but glutamate did not. Nitrogenase in crude extracts prepared from ammonium-inhibited cells showed activity as high as in extracts from N2-fixing cells. The pattern of the dinitrogenase and the dinitrogenase reductase revealed by the immunoblotting technique did not change upon ammonium chloride treatment of cells in vivo. No homologous sequences were detected with the draT-draG probe from Azospirillum lipoferum. There is no clear evidence that ADP-ribosylation of the dinitrogenase reductase is involved in the ammonium inhibition of H. seropedicae. The uncoupler carbonyl cyanide m-chlorophenylhydrazone decreased the intracellular ATP concentration and inhibited the nitrogenase activity of whole cells. The ATP pool was not significantly disturbed when cultures were treated with ammonium in vivo. Possible mechanisms for inhibition by ammonium of whole-cell nitrogenase activity in H. seropedicae are discussed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference51 articles.

1. Culture of Azospirillum;Albrecht S. L.;Methods Enzymol.,1980

2. Characterization of Herbaspirillum seropedicae gen. nov, sp. nov., a root-associated nitrogen-fixing bacterium;Baldani J. I.;Int. J. Syst. Bacteriol.,1986

3. Control of nitrogenase in a photosynthetic autotrophic bacterium. Ectothiorhodospira sp;Bognar A.;J. Bacteriol.,1982

4. Nitrogen fixation-assay methods and techniques;Burris R. H.;Methods Enzymol.,1972

5. Ammonia as an intermediate in nitrogen fixation by Azotobacter;Burris R. H.;J. Bacteriol.,1946

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3