Replication Capacity of Viruses from Acute Infection Drives HIV-1 Disease Progression

Author:

Selhorst Philippe1,Combrinck Carina1,Ndabambi Nonkululeko1,Ismail Sherazaan D.1,Abrahams Melissa-Rose1,Lacerda Miguel2,Samsunder Natasha3,Garrett Nigel3,Abdool Karim Quarraisha34,Abdool Karim Salim S.34,Williamson Carolyn135

Affiliation:

1. Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa

2. Department of Statistical Sciences, Faculty of Science, University of Cape Town, Cape Town, South Africa

3. Centre for the AIDS Programme of Research in South Africa, University of KwaZulu-Natal, Durban, South Africa

4. Department of Epidemiology, Columbia University, New York, New York, USA

5. National Health Laboratory Service, Johannesburg, South Africa

Abstract

ABSTRACT The viral genotype has been shown to play an important role in HIV pathogenesis following transmission. However, the viral phenotypic properties that contribute to disease progression remain unclear. Most studies have been limited to the evaluation of Gag function in the context of a recombinant virus backbone. Using this approach, important biological information may be lost, making the evaluation of viruses obtained during acute infection, representing the transmitted virus, a more biologically relevant model. Here, we evaluate the roles of viral infectivity and the replication capacity of viruses from acute infection in disease progression in women who seroconverted in the CAPRISA 004 tenofovir microbicide trial. We show that viral replication capacity, but not viral infectivity, correlates with the set point viral load (Spearman r = 0.346; P = 0.045) and that replication capacity (hazard ratio [HR] = 4.52; P = 0.01) can predict CD4 decline independently of the viral load (HR = 2.9; P = 0.004) or protective HLA alleles (HR = 0.61; P = 0.36). We further demonstrate that Gag-Pro is not the main driver of this association, suggesting that additional properties of the transmitted virus play a role in disease progression. Finally, we find that although viruses from the tenofovir arm were 2-fold less infectious, they replicated at rates similar to those of viruses from the placebo arm. This indicates that the use of tenofovir gel did not select for viral variants with higher replication capacity. Overall, this study supports a strong influence of the replication capacity in acute infection on disease progression, potentially driven by interaction of multiple genes rather than a dominant role of the major structural gene gag . IMPORTANCE HIV disease progression is known to differ between individuals, and defining which fraction of this variation can be attributed to the virus is important both clinically and epidemiologically. In this study, we show that the replication capacity of viruses isolated during acute infection predicts subsequent disease progression and drives CD4 decline independently of the viral load. This provides further support for the hypothesis that the replication capacity of the transmitted virus determines the initial damage to the immune system, setting the pace for later disease progression. However, we did not find evidence that the major structural gene gag drives this correlation, highlighting the importance of other genes in determining disease progression.

Funder

Clinical Infectious Diseases Research Initiative (CIDRI), South Africa

United States Agency for International Development

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3