Role of gB and pUS3 in Equine Herpesvirus 1 Transfer between Peripheral Blood Mononuclear Cells and Endothelial Cells: a Dynamic In Vitro Model

Author:

Spiesschaert Bart1,Goldenbogen Björn2,Taferner Selina1,Schade Matthias3,Mahmoud Medhat4,Klipp Edda2,Osterrieder Nikolaus1,Azab Walid15

Affiliation:

1. Institut für Virologie, Robert von Ostertag-Haus, Zentrum für Infektionsmedizin, Freie Universität Berlin, Berlin, Germany

2. Institute of Biology/Theoretical Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany

3. Institute of Biology/Molecular Biophysics, Humboldt-Universität zu Berlin, Berlin, Germany

4. Institute of Animal Breeding and Genetics, University of Hohenheim, Stuttgart, Germany

5. Department of Virology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt

Abstract

ABSTRACT Infected peripheral blood mononuclear cells (PBMC) effectively transport equine herpesvirus type 1 (EHV-1), but not EHV-4, to endothelial cells (EC) lining the blood vessels of the pregnant uterus or central nervous system, a process that can result in abortion or myeloencephalopathy. We examined, using a dynamic in vitro model, the differences between EHV-1 and EHV-4 infection of PBMC and PBMC-EC interactions. In order to evaluate viral transfer between infected PBMC and EC, cocultivation assays were performed. Only EHV-1 was transferred from PBMC to EC, and viral glycoprotein B (gB) was shown to be mainly responsible for this form of cell-to-cell transfer. For addressing the more dynamic aspects of PBMC-EC interaction, infected PBMC were perfused through a flow channel containing EC in the presence of neutralizing antibodies. By simulating capillary blood flow and analyzing the behavior of infected PBMC through live fluorescence imaging and automated cell tracking, we observed that EHV-1 was able to maintain tethering and rolling of infected PBMC on EC more effectively than EHV-4. Deletion of US3 reduced the ability of infected PBMC to tether and roll compared to that of cells infected with parental virus, which resulted in a significant reduction in virus transfer from PBMC to EC. Taking the results together, we conclude that systemic spread and EC infection by EHV-1, but not EHV-4, is caused by its ability to infect and/or reprogram mononuclear cells with respect to their tethering and rolling behavior on EC and consequent virus transfer. IMPORTANCE EHV-1 is widespread throughout the world and causes substantial economic losses through outbreaks of respiratory disease, abortion, and myeloencephalopathy. Despite many years of research, no fully protective vaccines have been developed, and several aspects of viral pathogenesis still need to be uncovered. In the current study, we investigated the molecular mechanisms that facilitate the cell-associated viremia, which is arguably the most important aspect of EHV-1 pathogenesis. The newly discovered functions of gB and pUS3 add new facets to their previously reported roles. Due to the conserved nature of cell-associated viremia among numerous herpesviruses, these results are also very relevant for viruses such as varicella-zoster virus, pseudorabies virus, human cytomegalovirus, and others. In addition, the constructed mutant and recombinant viruses exhibit potent in vitro replication but have significant defects in certain stages of the disease course. These viruses therefore show much promise as candidates for future live vaccines.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3