An upstream control region required for inducible transcription of the mouse H1(zero) histone gene during terminal differentiation

Author:

Dong Y1,Liu D1,Skoultchi A I1

Affiliation:

1. Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461.

Abstract

The replacement linker histone H1 (zero) is associated with terminal differentiation in many mammalian cell types, and its accumulation in chromatin may contribute to transcriptional repression occurring during terminal differentiation. H1 (zero) also accumulates in a variety of cell culture lines undergoing terminal differentiation. During in vitro mouse erythroleukemia cell differentiation, H1 (zero) gene expression is induced very rapidly, prior to the time when the cells actually commit to terminal differentiation. We have used a combination of transfection assays and in vitro DNA-protein interaction studies to identify nuclear protein binding sites in the H1 (zero) promoter that control expression and induction of the H1(zero) gene in mouse erythroleukemia cells. The results indicate that transcription of the H1 (zero) gene is controlled by three elements present in the upstream region of the promoter between positions -305 and -470. Site-directed mutagenesis of each of these elements showed that one of them controls inducibility of the gene in differentiating cells. The other two elements in the upstream control region affect primarily the level of transcription of the gene in undifferentiated and differentiating cells. These two elements share a DNA sequence motif consisting of a (dG)6 tract contained in an eight-base consensus, (A/C)GGGGGG(A/C). Additional copies of this motif are present elsewhere in the H1 (zero) promoter.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3