Chlamydophila pneumoniae PknD Exhibits Dual Amino Acid Specificity and Phosphorylates Cpn0712, a Putative Type III Secretion YscD Homolog

Author:

Johnson Dustin L.1,Mahony James B.1

Affiliation:

1. Faculty of Health Sciences and Department of Pathology and Molecular Medicine, McMaster University, and Father Sean O'Sullivan Research Centre, St. Joseph's Healthcare, Hamilton, Ontario, Canada

Abstract

ABSTRACT Chlamydophila pneumoniae is an obligate intracellular bacterium that causes bronchitis, pharyngitis, and pneumonia and may be involved in atherogenesis and Alzheimer's disease. Genome sequencing has identified three eukaryote-type serine/threonine protein kinases, Pkn1, Pkn5, and PknD, that may be important signaling molecules in Chlamydia . Full-length PknD was cloned and expressed as a histidine-tagged protein in Escherichia coli . Differential centrifugation followed by sodium carbonate treatment of E. coli membranes demonstrated that His-PknD is an integral membrane protein. Fusions of overlapping PknD fragments to alkaline phosphatase revealed that PknD contains a single transmembrane domain and that the kinase domain is in the cytoplasm. To facilitate solubility, the kinase domain was cloned and expressed as a glutathione S -transferase (GST) fusion protein in E. coli . Purified GST-PknD kinase domain autophosphorylated, and catalytic mutants (K33G, D156G, and K33G-D156G mutants) and activation loop mutants (T185A and T193A) were inactive. PknD phosphorylated recombinant Cpn0712, a type III secretion YscD homolog that has two forkhead-associated domains. Thin-layer chromatography revealed that the PknD kinase domain autophosphorylated on threonine and tyrosine and phosphorylated the FHA-2 domain of Cpn0712 on serine and tyrosine. To our knowledge, this is the first demonstration of a bacterial protein kinase with amino acid specificity for both serine/threonine and tyrosine residues and this is the first study to show phosphorylation of a predicted type III secretion structural protein.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3