Transcriptional analysis of beta-lactamase regulation in Bacillus licheniformis

Author:

Salerno A J,Lampen J O

Abstract

The expression of the blaP gene for the beta-lactamase of Bacillus licheniformis was examined by transcriptional analyses. Radiolabeled probes containing the blaP gene or various regions 3' or 5' to it were used to analyze RNA samples prepared from induced and uninduced cultures of wild-type and mutant B. licheniformis strains. The level of blaP mRNA was low in uninduced wild-type cells. At 37 degrees C, blaP mRNA levels reached a maximum 1 h after induction while rising up to 180-fold and then declined, but remained severalfold above the uninduced level for several hours. The rate of beta-lactamase synthesis was roughly proportional to the levels of blaP mRNA in both wild-type and mutant strains, indicating that regulation of beta-lactamase formation occurs primarily at the level of transcription. Turnover of blaP mRNA in the presence of rifampin was rapid, giving a blaP mRNA half-life of about 2 min. Yet, high levels of blaP mRNA were maintained for at least 1 h after removal of free inducer. Three blaP mRNAs of 1.2, 2.9, and 3.4 kilobases were produced from the blaP promoter. The most abundant made up about 97% of all blaP transcripts and was also the smallest, ending at a transcriptional terminator located about 60 bases 3' to the blaP structural gene. Variables such as incubation temperature, cytotoxicity of inducer, and type of strain had essentially no effect on the ratio of large blaP mRNA to total blaP mRNA. The 2.9- and 3.4-kilobase blaP mRNAs identify potential locations of genetically linked regulators of beta-lactamase synthesis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3