Affiliation:
1. Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Abstract
Colicins E1 and K inhibited a whole series of energy-dependent reactions in
Escherichia coli
cells, including motility, biosynthesis of nucleic acids, proteins and polysaccharides, and the conversion of ornithine to citrulline. Respiration was only partially affected, and substrates such as glucose continued to be catabolized through the normal pathways, albeit with reduced CO
2
production. The soluble products of aerobic glucose catabolism by colicin-treated cells were analyzed. Pyruvate replaced acetate as the major excreted product, and the following intermediates of glycolysis were excreted in significant amounts: glucose-6-phosphate, fructose-1,6-diphosphate, dihydroxyacetone phosphate, and 3-phosphoglycerate. Anaerobically growing cells manifested a somewhat enhanced tolerance to the colicins. This protection by anaerobiosis appeared to depend on the exclusion of oxygen more than on the extent of fermentative catabolism versus catabolism of the respiratory type. These results are interpreted in terms of possible functions of colicin in lowering the adenosine triphosphate (ATP) content of the cells and in terms of the role of lowered ATP levels in inhibiting many of the energy-requiring reactions.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
100 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献