Proteomic Identification of a Novel Anaplasma phagocytophilum DNA Binding Protein That Regulates a Putative Transcription Factor

Author:

Wang Xueqi1,Kikuchi Takane1,Rikihisa Yasuko1

Affiliation:

1. Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210

Abstract

ABSTRACT Anaplasma phagocytophilum , the etiologic agent of human granulocytic anaplasmosis, is an obligatory intracellular bacterium. Little is known about the gene regulatory mechanisms for this bacterium. A gene encoding a putative transcription factor, tr1 , upstream of three tandem genes encoding outer membrane proteins, including the major outer membrane protein P44, is driven by a strong promoter. In the present study, gel mobility shift assays revealed the presence of A. phagocytophilum proteins that interact with the promoter region of tr1 . These proteins interacting with the tr1 promoter region were purified by biotin-labeled DNA affinity chromatography from a large amount of host cell-free bacteria. Mass spectrometry identified the major protein as an A. phagocytophilum 12.5-kDa hypothetical protein, which was named ApxR. In a DNase I protection assay, recombinant ApxR (rApxR) bound cooperatively to four 24- or 25-bp sites within 235 bp upstream of tr1 : regions III and IV proximal to tr1 had higher affinity than regions I and II did. Deletion assays showed that regions III and IV were essential for rApxR binding, whereas regions I and II upstream of regions III and IV were not. The primary cis -acting region was region IV, since region IV alone was sufficient for rApxR to strongly transactivate the downstream gene in a lacZ reporter assay. Addition of regions I, II, and III did not enhance transactivation. These results show that ApxR is a novel transcriptional regulator that directly regulates tr1 .

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3