Functional Interaction between the N and C Termini of NhaD Antiporters from Halomonas sp. Strain Y2

Author:

Meng Yiwei1,Yang Zhou1,Cheng Bin1,Nie Xinyu1,Li Shannan1,Yin Huijia1,Xu Ping1,Yang Chunyu1

Affiliation:

1. State Key Laboratory of Microbial Technology, Shandong University, Jinan, People's Republic of China

Abstract

ABSTRACT Two NhaD-type antiporters, NhaD1 and NhaD2, from the halotolerant and alkaliphilic Halomonas sp. strain Y2, exhibit different physiological functions in regard to Na + and Li + resistance, although they share high sequence identity. In the present study, the truncation of an additional 4 C-terminal residues from NhaD2 or an exchange of 39 N-terminal residues between these proteins resulted in the complete loss of antiporter activity. Interestingly, combining 39 N-terminal residues and 7 C-terminal residues of NhaD2 (N39D2-C7) partially recovered the activity for Na + and Li + expulsion, as well as complementary growth following exposure to 300 mM Na + and 100 mM Li + stress. The recovered activity of chimera N39D2-C7 indicated that the N and C termini are structurally dependent on each other and function synergistically. Furthermore, fluorescence resonance energy transfer (FRET) analysis suggested that the N and C termini are relatively close in proximity which may account for their synergistic function in ion translocation. In the N-terminal region of N39D2-C7, the replacement of Glu 38 with Pro abolished the recovered complementary and transport activities. In addition, this amino acid substitution in NhaD2 resulted in a drastically decreased complementation ability in Escherichia coli KNabc (level identical to that of NhaD1), as well as decreased activity and an altered pH profile. IMPORTANCE Limited information on NhaD antiporters supports speculation that these antiporters are important for resistance to high salinity and alkalinity. Moreover, only a few functional residues have been identified in NhaD antiporters, and there is limited literature on the molecular mechanisms of NhaD antiporter activity. The altered antiporter abilities of chimeras and mutants in this study implicate the functions of the N and C termini, especially Glu 38 , in pH regulation and ion translocation, and, most importantly, the essential roles of this negatively charged residue in maintaining the physiological function of NhaD2. These findings further our understanding of the molecular mechanism of NhaD antiporters for ion transport.

Funder

National Natural Science Foundation of China

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3