Gallium Maltolate Treatment Eradicates Pseudomonas aeruginosa Infection in Thermally Injured Mice

Author:

DeLeon Katrina1,Balldin Fredrik1,Watters Chase1,Hamood Abdul2,Griswold John1,Sreedharan Sunil3,Rumbaugh Kendra P.1

Affiliation:

1. Departments of Surgery

2. Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430

3. Titan Pharmaceuticals, Inc., South San Francisco, California 94080

Abstract

ABSTRACT Gallium (Ga) is a semimetallic element that has demonstrated therapeutic and diagnostic-imaging potential in a number of disease settings, including cancer and infectious diseases. Gallium's biological actions stem from its ionic radius being almost the same as that of ferric iron (Fe 3+ ), whereby it can replace iron (Fe) in Fe 3+ -dependent biological systems, such as bacterial and mammalian Fe transporters and Fe 3+ -containing enzymes. Unlike Fe 3+ , ionic gallium (Ga 3+ ) cannot be reduced, and when incorporated, it inactivates Fe 3+ -dependent reduction and oxidation processes that are necessary for bacterial and mammalian cell proliferation. Most pathogenic bacteria require Fe for growth and function, and the availability of Fe in the host or environment can greatly enhance virulence. We examined whether gallium maltolate (GaM), a novel formulation of Ga, had antibacterial activity in a thermally injured acute infection mouse model. Dose-response studies indicated that a GaM dose as low as 25 mg/kg of body weight delivered subcutaneously was sufficient to provide 100% survival in a lethal P. aeruginosa -infected thermally injured mouse model. Mice treated with 100 mg/kg GaM had undetectable levels of Pseudomonas aeruginosa in their wounds, livers, and spleens, while the wounds of untreated mice were colonized with over 10 8 P. aeruginosa CFU/g of tissue and their livers and spleens were colonized with over 10 5 P. aeruginosa CFU/g of tissue. GaM also significantly reduced the colonization of Staphylococcus aureus and Acinetobacter baumannii in the wounds of thermally injured mice. Furthermore, GaM was also therapeutically effective in preventing preestablished P. aeruginosa infections at the site of the injury from spreading systemically. Taken together, our data suggest that GaM is potentially a novel antibacterial agent for the prevention and treatment of wound infections following thermal injury.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3