Affiliation:
1. Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 1000 Route 202 South, Raritan, New Jersey 08869
2. Basilea Pharmaceutica Ltd., Grenzacherstrasse 487, P.O. Box, CH-4005 Basel, Switzerland
Abstract
ABSTRACT
The interactions of ceftobiprole with purified β-lactamases from molecular classes A, B, C, and D were determined and compared with those of benzylpenicillin, cephaloridine, cefepime, and ceftazidime. Enzymes were selected from functional groups 1, 2a, 2b, 2be, 2d, 2e, and 3 to represent β-lactamases from organisms within the antibacterial spectrum of ceftobiprole. Ceftobiprole was refractory to hydrolysis by the common staphylococcal PC1 β-lactamase, the class A TEM-1 β-lactamase, and the class C AmpC β-lactamase but was labile to hydrolysis by class B, class D, and class A extended-spectrum β-lactamases. Cefepime and ceftazidime followed similar patterns. In most cases, the hydrolytic stability of a substrate correlated with the MIC for the producing organism. Ceftobiprole and cefepime generally had lower MICs than ceftazidime for AmpC-producing organisms, particularly AmpC-overexpressing
Enterobacter cloacae
organisms. However, all three cephalosporins were hydrolyzed very slowly by AmpC cephalosporinases, suggesting that factors other than β-lactamase stability contribute to lower ceftobiprole and cefepime MICs against many members of the family
Enterobacteriaceae
.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
81 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献