Alkaline phosphatase and OmpA protein can be translocated posttranslationally into membrane vesicles of Escherichia coli

Author:

Chen L,Rhoads D,Tai P C

Abstract

We previously described a system for translocating the periplasmic enzyme alkaline phosphatase and the outer membrane protein OmpA into inverted membrane vesicles of Escherichia coli. We have now optimized and substantially improved the translocation system by including polyamines and by reducing the amount of membrane used. Under these conditions, efficient translocation was seen even posttranslationally, i.e., when vesicles were not added until after protein synthesis was stopped. This was the case not only with the OmpA protein, which is synthesized by free polysomes and hence is presumably exported posttranslationally in the cell, but also with alkaline phosphatase, which is synthesized only by membrane-bound polysomes and has been shown to be secreted cotranslationally in the cells. Prolonged incubation rendered the precursors inactive for subsequent translocation. Posttranslational translocation was impaired, like cotranslational translocation, by inhibitors of the proton motive force and by treatment of the vesicles with protease. Since it appears that E. coli can translocate the same proteins either cotranslationally or posttranslationally, the cotranslational mode may perhaps be more efficient, but not obligatory, for the secretion of bacterial proteins.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3