Affiliation:
1. Vaccine and Infectious Disease Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington
2. UCLA AIDS Institute, Department of Medicine, Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California
Abstract
ABSTRACT
Human immunodeficiency virus type 1 (HIV-1) Nef is a multifunctional protein that confers an ability to evade killing by cytotoxic T lymphocytes (CTLs) as well as other advantages to the virus in vivo. Here we exploited mathematical modeling and related statistical methods to estimate the impact of Nef activity on viral replication in vivo in relation to CTLs. Our results indicate that downregulation of major histocompatibility complex class I (MHC-I) A and B by wild-type Nef confers an advantage to the virus of about 82% in decreased CTL killing efficiency on average, meaning that abolishing the MHC-I downregulation function of Nef would increase killing by more than fivefold. We incorporated this estimate, as well as prior estimates of replicative enhancement by Nef, into a previously published model of HIV-1 and CTLs in vivo (W. D. Wick, O. O. Yang, L. Corey, and S. G. Self, J. Virol. 79:13579-13586, 2005), generalized to permit CTL recognition of multiple epitopes. A sequence database analysis revealed that 92.9% of HIV-1 epitopes are A or B restricted, and a previous study found an average of about 19 epitopes recognized (M. M. Addo et al., J. Virol. 77:2081-2092, 2003). We combined these estimates in the model in order to predict the impact of inhibiting Nef function in the general (chronically infected) population by a drug. The predicted impact on viral load ranged from negligible to 2.4 orders of magnitude, depending on the effects of the drug and the CTL dynamical scenario assumed. We conclude that inhibiting Nef could make a substantial reduction in disease burden, lengthening the time before the necessity of undertaking combination therapy with other antiretroviral drugs.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Reference55 articles.
1. Comprehensive Epitope Analysis of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific T-Cell Responses Directed against the Entire Expressed HIV-1 Genome Demonstrate Broadly Directed Responses, but No Correlation to Viral Load
2. Adnan, S., A. Balamurugan, A. Trocha, M. S. Bennett, H. L. Ng, A. Ali, C. Brander, and O. O. Yang. 2006. Nef interference with HIV-1-specific CTL antiviral activity is epitope specific. Blood 108 : 3414-3419.
3. Modulation of Different Human Immunodeficiency Virus Type 1 Nef Functions during Progression to AIDS
4. Carmichael, A., X. Jin, P. Sissons, and L. Borysiewicz. 1993. Quantitative analysis of the human immunodeficiency virus type 1 (HIV-1)-specific cytotoxic T lymphocyte (CTL) response at different stages of HIV-1 infection: differential CTL responses to HIV-1 and Epstein-Barr virus in late disease. J. Exp. Med. 177 : 249-256.
5. Optimal infectivity in vitro of human immunodeficiency virus type 1 requires an intact nef gene
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献