Dissociation of the CD4 downregulation and viral infectivity enhancement functions of human immunodeficiency virus type 1 Nef

Author:

Goldsmith M A1,Warmerdam M T1,Atchison R E1,Miller M D1,Greene W C1

Affiliation:

1. Gladstone Institute of Virology and Immunology, School of Medicine, University of California San Francisco 94141, USA.

Abstract

Recent evidence indicates that the nef gene of human immunodeficiency virus type 1 augments rather than inhibits viral replication in both cell culture and in vivo models. In addition, nef alters various normal cellular processes, including the display of CD4 on the cell surface. However, it remains unknown whether the enhancement of infectivity and the downregulation of CD4 represent linked or independent biologic properties of this single protein. In the present studies, mutational analyses were performed to define structure-function relationships within the Nef protein that mediate these effects. To assess the functional consequences of these mutations, sensitive and reliable assays were developed to quantitate the viral infectivity enhancement and CD4 downregulation functions of Nef. The results indicate that membrane-targeting sequences at the N terminus of Nef are important for both functions of Nef, while certain other conserved regions are dispensable for both functions. A conserved proline-X-X repeat segment in the central core of the protein, which is reminiscent of an SH3-binding domain, is critical for the enhancement of infectivity function but is dispensable for CD4 downregulation. However, the downregulation of CD4 by Nef appears to involve a two-step process requiring the initial dissociation of p56lck from CD4 to permit engagement of the endocytic apparatus by CD4. Together, these findings demonstrate that the infectivity enhancement and CD4 downregulation activities of human immunodeficiency virus type 1 Nef can be dissociated. Thus, these processes may be independent of one another in the viral replication cycle.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 188 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3