Activation of an Antiviral Response in Normal but Not Transformed Mouse Cells: a New Determinant of Minute Virus of Mice Oncotropism

Author:

Grekova Svitlana1,Zawatzky Rainer2,Hörlein Rita1,Cziepluch Celina1,Mincberg Michal3,Davis Claytus3,Rommelaere Jean1,Daeffler Laurent1

Affiliation:

1. Applied Tumor Virology Program, Division F010, Institut National de la Santé et de la Recherche Médicale, INSERM U701

2. Division F030, Department of Viral Transformation Mechanisms, German Cancer Research Center, Im Neuenheimer Feld 242, 69120 Heidelberg, Germany

3. Virology and Developmental Genetics, Ben Gurion University of the Negev, Ben Gurion Ave., 84105 Beer Sheva, Israel

Abstract

ABSTRACT Parvovirus minute virus of mice (MVMp) is endowed with oncotropic properties so far ascribed only to the dependency of the virus life cycle on cellular factors expressed during S phase and/or modulated by malignant transformation. For other viruses oncotropism relies on their inability to circumvent type I interferon (IFN)-induced innate antiviral mechanisms, the first line of defense triggered by normal cells against viral infections. These agents propagate, therefore, preferentially in transformed/tumor cells, which often lack functional antiviral mechanisms. The present study aimed at investigating whether antiviral processes also contribute to MVMp oncotropism. Our results demonstrate that in contrast to MVMp-permissive transformed mouse A9 fibroblasts, freshly isolated normal counterparts (mouse embryonic fibroblasts [MEFs]) mount, through production and release of type I IFNs upon their infection, an antiviral response against MVMp lytic multiplication. Pretreatment of MEFs with a type I IFN-β-neutralizing antibody, prior to MVMp infection, inhibits the virus-triggered antiviral response and improves the fulfillment of the MVMp life cycle. Our results also show that part of the A9 permissiveness to MVMp relies on the inability to produce type I IFNs upon parvovirus infection, a feature related either to an A9 intrinsic deficiency of this process or to an MVMp-triggered inhibitory mechanism, since stimulation of these cells by exogenous IFN-β strongly inhibits the parvovirus life cycle. Taken together, our results demonstrate for the first time that parvovirus infection triggers an innate antiviral response in normal cells and suggest that the MVMp oncotropism depends at least in part on the failure of infected transformed cells to mount such a response.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3