Efficient modulation of cellular phosphorus components in response to phosphorus deficiency in the dinoflagellate Karenia mikimotoi

Author:

Huang Xue-Ling1,Zhuang Yan-Qing1,Xiong Yue-Yue1,Li Da-Wei1ORCID,Ou Lin-Jian12ORCID

Affiliation:

1. College of Life Science and Technology and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University , Guangzhou, China

2. Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) , Zhuhai, China

Abstract

ABSTRACT With an increasing trend of phosphorus limitation in coastal waters, phytoplankton with advantageous strategies to address phosphorus deficiency might be more competitive in their communities. Combining physiological, transcriptomic, and miRNA analyses, the present study analyzed the molecular responses of different intracellular phosphorus components to phosphorus deficiency in the harmful dinoflagellate Karenia mikimotoi , with a specific focus on membrane phospholipid remodeling. The cellular phosphorus components of phospholipids, polyphosphate (polyP), and RNA and the associated gene expression showed dynamic variations over a prolonged phosphorus-stressed period. Under phosphorus deficiency, K. mikimotoi preferred to preserve polyP and RNA but efficiently replaced phospholipids with glycerol glycolipids and a betaine lipid to maintain active growth. This dynamic phospholipid substitution in K. mikimotoi was a combined result of the cessation of phospholipid biosynthesis and an increase in phospholipid breakdown. The expression of the identified miRNAs involved in ATP metabolism indicated that miRNAs may play an important role in regulating energy metabolism in K. mikimotoi . The present study improved the understanding of the molecular mechanism of intracellular phosphorus metabolism in marine phytoplankton and highlighted the strong capability of dinoflagellates to efficiently modulate intracellular phosphorus resources. IMPORTANCE Dinoflagellates are the most common phytoplankton group and account for more than 75% of harmful algal blooms in coastal waters. In recent decades, dinoflagellates seem to prevail in phosphate-depleted waters. However, the underlying acclimation mechanisms and competitive strategies of dinoflagellates in response to phosphorus deficiency are poorly understood, especially in terms of intracellular phosphorus modulation and recycling. Here, we focused on the response of intracellular phosphorus metabolism to phosphorus deficiency in the model dinoflagellate Karenia mikimotoi . Our work reveals the strong capability of K. mikimotoi to efficiently regulate intracellular phosphorus resources, particularly through membrane phospholipid remodeling and miRNA regulation of energy metabolism. Our research improved the understanding of intracellular phosphorus metabolism in marine phytoplankton and underscored the advantageous strategies of dinoflagellates in the efficient modulation of internal phosphorus resources to maintain active physiological activity and growth under unsuitable phosphorus conditions, which help them outcompete other species in coastal phosphate-depleted environments.

Funder

The Nature Science Foundation of China

GDSTC | Basic and Applied Basic Research Foundation of Guangdong Province

Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3