Response of Methylocystis sp. Strain SC2 to Salt Stress: Physiology, Global Transcriptome, and Amino Acid Profiles

Author:

Han Dongfei12,Link Hannes12,Liesack Werner12

Affiliation:

1. Max Planck Institute for Terrestrial Microbiology, Marburg, Germany

2. Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany

Abstract

ABSTRACT Soil microorganisms have to rapidly respond to salt-induced osmotic stress. Type II methanotrophs of the genus Methylocystis are widely distributed in upland soils but are known to have a low salt tolerance. Here, we tested the ability of Methylocystis sp. strain SC2 to adapt to increased salinity. When exposed to 0.75% NaCl, methane oxidation was completely inhibited for 2.25 h and fully recovered within 6 h. Growth was inhibited for 23.5 h and then fully recovered. Its transcriptome was profiled after 0 min (control), 45 min (early response), and 14 h (late response) of stress exposure. Physiological and transcriptomic stress responses corresponded well. Salt stress induced the differential expression of 301 genes, with sigma factor σ 32 being a major controller of the transcriptional stress response. The transcript levels of nearly all the genes involved in oxidizing CH 4 to CO 2 remained unaffected, while gene expression involved in energy-yielding reactions ( nuoA-N ) recovered concomitantly with methane oxidation from salt stress shock. Glutamate acted as an osmoprotectant. Its accumulation in late stress response corresponded to increased production of glutamate dehydrogenase 1. Chromosomal genes whose products (stress-induced protein, DNA-binding protein from starved cells, and CsbD family protein) are known to confer stress tolerance showed increased expression. On plasmid pBSC2-1, genes encoding type IV secretion system and single-strand DNA-binding protein were upregulated in late response, suggesting stress-induced activation of the plasmid-borne conjugation machinery. Collectively, our results show that Methylocystis sp. strain SC2 is able to adapt to salt stress, but only within a narrow range of salinities. IMPORTANCE Besides the oxic interface of methanogenic environments, Methylocystis spp. are widely distributed in upland soils, where they may contribute to the oxidation of atmospheric methane. However, little is known about their ability to cope with changes in soil salinity. Growth and methane oxidation of Methylocystis sp. strain SC2 were not affected by the presence of 0.5% NaCl, while 1% NaCl completely inhibited its activity. This places strain SC2 into the low-salt-tolerance range reported for other Methylocystis species. Our results show that, albeit in a narrow range, strain SC2 is able to respond and adapt to salinity changes. It possesses various stress response mechanisms, which allow resumption of growth within 24 h when exposed to 0.75% NaCl. Presumably, these mechanisms allow Methylocystis spp., such as strain SC2, to thrive in upland soils and to adapt to certain fluctuations in soil salinity.

Funder

Deutsche Forschungsgemeinschaft

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3