Inactivation of the lys7 Gene, Encoding Saccharopine Reductase in Penicillium chrysogenum , Leads to Accumulation of the Secondary Metabolite Precursors Piperideine-6-Carboxylic Acid and Pipecolic Acid from α-Aminoadipic Acid

Author:

Naranjo Leopoldo1,Martín de Valmaseda Eva2,Casqueiro Javier12,Ullán Ricardo V.2,Lamas-Maceiras Mónica1,Bañuelos Oscar1,Martín Juan F.12

Affiliation:

1. Area de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León

2. Instituto de Biotecnología de León, Parque Científico de León, 24006 León, Spain

Abstract

ABSTRACT Pipecolic acid serves as a precursor of the biosynthesis of the alkaloids slaframine and swainsonine (an antitumor agent) in some fungi. It is not known whether other fungi are able to synthesize pipecolic acid. Penicillium chrysogenum has a very active α-aminoadipic acid pathway that is used for the synthesis of this precursor of penicillin. The lys7 gene, encoding saccharopine reductase in P. chrysogenum , was target inactivated by the double-recombination method. Analysis of a disrupted strain (named P. chrysogenum SR1 ) showed the presence of a mutant lys7 gene lacking about 1,000 bp in the 3′-end region. P. chrysogenum SR1 lacked saccharopine reductase activity, which was recovered after transformation of this mutant with the intact lys7 gene in an autonomously replicating plasmid. P. chrysogenum SR1 was a lysine auxotroph and accumulated piperideine-6-carboxylic acid. When mutant P. chrysogenum SR1 was grown with l- lysine as the sole nitrogen source and supplemented with dl -α-aminoadipic acid, a high level of pipecolic acid accumulated intracellularly. A comparison of strain SR1 with a lys2 -defective mutant provided evidence showing that P. chrysogenum synthesizes pipecolic acid from α-aminoadipic acid and not from l- lysine catabolism.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Reference36 articles.

1. PENICILLIN AND CEPHALOSPORIN BIOSYNTHETIC GENES: Structure, Organization, Regulation, and Evolution

2. Aspen, A. J., and A. Meister. 1962. Conversion of α-aminoadipic acid to l-pipecolic acid by Aspergillus nidulans. Biochemistry1:606-611.

3. Bañuelos, O., J. Casqueiro, S. Steidl, S. Gutiérrez, A. Brakhage, and J. F. Martín. 2002. Subcellular localization of the homocitrate synthase in Penicillium chrysogenum. Mol. Gen. Genet. Genomics266:711-719.

4. Bhattacharjee J. K. 1992. Evolution of α-aminoadipate pathway for the synthesis of lysine in fungi p. 47-80. In R. P. Mortlock (ed.) Evolution of metabolic function. CRC Press Inc. Boca Ratón Fla.

5. Bhattacharjee, J. K. 1985. α-Aminoadipate pathway for the biosynthesis of lysine in lower eukaryotes. Crit. Rev. Microbiol.12:131-151.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3