A distinct glucocorticoid hormone response regulates phosphoprotein maturation in rat hepatoma cells.

Author:

Karlsen K,Vallerga A K,Hone J,Firestone G L

Abstract

Glucocorticoid hormone-dependent maturation of the mouse mammary tumor virus (MMTV) phosphorylated polyprotein (Pr74) allows experimental access to certain posttranslational regulatory circuits under steroid control in M1.54 cells, an MMTV-infected rat hepatoma cell line. Pulse-chase experiments revealed that [35S]methionine-labeled Pr74 synthesized in uninduced cells could be converted posttranslationally into p24, a stable phosphorylated maturation product, only after 4 h of exposure to 1 microM dexamethasone, a synthetic glucocorticoid. This regulated processing could be prevented by prior exposure, during the chase period, to inhibitors of RNA (actinomycin D) or protein (cycloheximide or puromycin) synthesis. Moreover, half-maximal production of p24 occurred at 10 nM dexamethasone, a concentration that approximated half-maximal receptor binding and stimulation of MMTV transcript synthesis. Kinetic, hormonal, and genetic evidence suggest that p24 expression did not require or result from the overall glucocorticoid-dependent increase in polyprotein concentration. First, 20 h after dexamethasone withdrawal, Pr74 maturation was completely deinduced, whereas the absolute level of this MMTV precursor remained 10-fold over its basal level. Second, progesterone, which competes with dexamethasone for receptor binding, facilitated the regulated production of p24 but prevented the steroid-mediated accumulation of functional MMTV mRNA. Lastly, certain glucocorticoid-responsive variants, derived from M1.54 cells by resistance to complement cytolysis, expressed p24 in the presence or absence of glucocorticoid-induced levels of Pr74. Taken together, our results suggest that the glucocorticoid-regulated maturation of MMTV phosphopolyproteins resulted from an independent hormone response that required normal receptor function and de novo RNA and protein synthesis.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3