Single base-pair mutations in centromere element III cause aberrant chromosome segregation in Saccharomyces cerevisiae.

Author:

McGrew J,Diehl B,Fitzgerald-Hayes M

Abstract

In this paper we show that a 211-base pair segment of CEN3 DNA is sufficient to confer wild-type centromere function in the yeast Saccharomyces cerevisiae. We used site-directed mutagenesis of the 211-base pair fragment to examine the sequence-specific functional requirements of a conserved 11-base pair segment of centromere DNA, element III (5'-TGATTTATCCGAA-3'). Element III is the most highly conserved of the centromeric DNA sequences, differing by only a single adenine X thymine base pair among the four centromere DNAs sequenced thus far. All of the element III sequences contain specific cytosine X guanine base pairs, including a 5'-CCG-3' arrangement, which we targeted for single cytosine-to-thymine mutations by using sodium bisulfite. The effects of element III mutations on plasmid and chromosome segregation were determined by mitotic stability assays. Conversion of CCG to CTG completely abolished centromere function both in plasmids and in chromosome III, whereas conversion of CCG to TCG decreased plasmid and chromosome stability moderately. The other two guanine X cytosine base pairs in element III could be independently converted to adenine X thymine base pairs without affecting plasmid or chromosome stability. We concluded that while some specific nucleotides within the conserved element III sequence are essential for proper centromere function, other conserved nucleotides can be changed.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 110 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3