Role of Soil pH in the Development of EnhancedBiodegradation ofFenamiphos

Author:

Singh Brajesh K.12,Walker Allan1,Morgan J. Alun W.1,Wright Denis J.2

Affiliation:

1. Horticulture Research International, Wellesbourne, Warwick CV35 9EF

2. Department of Biological Sciences, Imperial College at Silwood Park, Ascot, Berkshire SL5 7PY, United Kingdom

Abstract

ABSTRACT Repeated treatment with fenamiphos (ethyl 4-methylthio- m -tolyl isopropylphosphoramidate) resulted in enhanced biodegradation of this nematicide in two United Kingdom soils with a high pH (≥7.7). In contrast, degradation of fenamiphos was slow in three acidic United Kingdom soils (pH 4.7 to 6.7), and repeated treatments did not result in enhanced biodegradation. Rapid degradation of fenamiphos was observed in two Australian soils (pH 6.7 to 6.8) in which it was no longer biologically active against plant nematodes. Enhanced degrading capability was readily transferred from Australian soil to United Kingdom soils, but only those with a high pH were able to maintain this capability for extended periods of time. This result was confirmed by fingerprinting bacterial communities by 16S rRNA gene profiling of extracted DNA. Only United Kingdom soils with a high pH retained bacterial DNA bands originating from the fenamiphos-degrading Australian soil. A degrading consortium was enriched from the Australian soil that utilized fenamiphos as a sole source of carbon. The 16S rRNA banding pattern (determined by denaturing gradient gel electrophoresis) from the isolated consortium migrated to the same position as the bands from the Australian soil and those from the enhanced United Kingdom soils in which the Australian soil had been added. When the bands from the consortium and the soil were sequenced and compared they showed between 97 and 100% sequence identity, confirming that these groups of bacteria were involved in degrading fenamiphos in the soils. The sequences obtained showed similarity to those from the genera Pseudomonas , Flavobacterium , and Caulobacter . In the Australian soils, two different degradative pathways operated simultaneously: fenamiphos was converted to fenamiphos sulfoxide (FSO), which was hydrolyzed to the corresponding phenol (FSO-OH) or was hydrolyzed directly to fenamiphos phenol. In the United Kingdom soils in which enhanced degradation had been induced, fenamiphos was oxidized to FSO and then hydrolyzed to FSO-OH, but direct conversion to fenamiphos phenol did not occur.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3