In Situ Exposure to Low Herbicide Concentrations Affects Microbial Population Composition and Catabolic Gene Frequency in an Aerobic Shallow Aquifer

Author:

de Lipthay Julia R.1,Tuxen Nina2,Johnsen Kaare13,Hansen Lars H.4,Albrechtsen Hans-Jørgen2,Bjerg Poul L.2,Aamand Jens1

Affiliation:

1. Department of Geochemistry, Geological Survey of Denmark and Greenland, Øster Voldgade 10, DK-1350 Copenhagen K

2. Environment & Resources DTU, Technical University of Denmark, DK-2800 Lyngby

3. Danish Veterinary Institute, DK-1790 Copenhagen V

4. Department of General Microbiology, University of Copenhagen, DK-1307 Copenhagen K, Denmark

Abstract

ABSTRACT The aim of this study was to evaluate how the in situ exposure of a Danish subsurface aquifer to phenoxy acid herbicides at low concentrations (<40 μg l −1 ) changes the microbial community composition. Sediment and groundwater samples were collected inside and outside the herbicide-exposed area and were analyzed for the presence of general microbial populations, Pseudomonas bacteria, and specific phenoxy acid degraders. Both culture-dependent and culture-independent methods were applied. The abundance of microbial phenoxy acid degraders (10 0 to 10 4 g −1 sediment) was determined by most probable number assays, and their presence was only detected in herbicide-exposed sediments. Similarly, PCR analysis showed that the 2,4-dichlorophenoxyacetic acid degradation pathway genes tfdA and tfdB (10 2 to 10 3 gene copies g −1 sediment) were only detected in sediments from contaminated areas of the aquifer. PCR-restriction fragment length polymorphism measurements demonstrated the presence of different populations of tfd genes, suggesting that the in situ herbicide degradation was caused by the activity of a heterogeneous population of phenoxy acid degraders. The number of Pseudomonas bacteria measured by either PCR or plating on selective agar media was higher in sediments subjected to high levels of phenoxy acid. Furthermore, high numbers of CFU compared to direct counting of 4′,6-diamidino-2-phenylindole-stained cells in the microscope suggested an increased culturability of the indigenous microbial communities from acclimated sediments. The findings of this study demonstrate that continuous exposure to low herbicide concentrations can markedly change the bacterial community composition of a subsurface aquifer.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3